Problem Set 3 – Due Friday, April 18, 2014

Problem 1. Using the procedure shown in class, convert the following NFA into a DFA for the same language. Show all work.

Problem 2. Using the procedure shown in class, eliminate all ε-arrows from the following NFA.

Problem 3. Let \(L_1, L_2, L_3 \subseteq \Sigma^* \) be languages and let \(\text{maj}(L_1, L_2, L_3) \) be the set of all \(x \in \Sigma^* \) that are in at least two of \(L_1, L_2, L_3 \). Prove: if \(L_1, L_2, \) and \(L_3 \) are DFA-acceptable then so is \(\text{maj}(L_1, L_2, L_3) \).

Problem 4 Let \(Z(L) = \{ a_1a_2\cdots a_n : a_1a_2\cdots a_n \in L \} \). Prove that the DFA-acceptable languages are closed under \(Z \). Having proved it once: can you think of another, different proof?

Problem 5. How many states are in the smallest possible DFA for \(\{0,1\}^*\{1^0\} \)? Prove your result.

Problem 6 Let \(L_n \) (for \(n \geq 1 \)) be \(\{0,1\}^*\{1\}\{0,1\}^n \). Prove that there is an NFA for \(L_n \) having \(n + 2 \) states, but that there is no DFA for \(L_n \) having \(2^n - 1 \) or fewer states. In a well written English sentence or two, give a high-level interpretation of your result.