1. A PDA $M = (Q, \Sigma, \Gamma, \delta, q_0, F)$ has $|Q| = 10$ states and $|\Sigma| = 2$ characters in the input alphabet and $|\Gamma| = 5$ characters in the tape alphabet. Then there are ________ points in the domain of δ and ________ points in the range of δ.

2. State the Church-Turing thesis:

3. Let A and B be languages. Define $A \leq_m B$ (A many-one reduces to B):

4. When we define the language $A_{TM} = \{ \langle M, w \rangle : \text{TM } M \text{ accepts } w \}$, what is the purpose of the angle brackets (the $\langle \rangle$ symbols) that surround M, w?

5. Darken the correct box. No justification is required. If you’re not sure, guess.

 (a) True False If L is recursive then so is its complement, \overline{L}.
 (b) True False If L^* is recursive than L is recursive.
 (c) True False If L is context free then a queue automata (QA) can decide it.
 (d) True False The r.e. languages are closed under complement.
 (e) True False $L = \{ \langle M \rangle : L(M) \neq \emptyset \}$ is Turing-acceptable (r.e.)
 (f) True False $L = \{ a^n b^n : n \geq 1 \}$ is co-r.e.
 (g) True False If $\Pi \leq_m L$ and Π is undecidable than L is undecidable.
 (h) True False To show that L is not r.e., it suffice to show that $A_{TM} \leq_m L$.
 (i) True False To show that L is not r.e., it suffice to show that $\overline{A}_{TM} \leq_m L$.
 (j) True False A language L is either r.e. or co-r.e..
 (k) True False The Turing-acceptable languages are closed under intersection.
 (l) True False The Turing-acceptable languages are closed under set difference.