Quiz 9 Solutions

For this quiz I want you to prove that

$$
A=\{\langle M, k\rangle: M \text { is a TM that accepts at least one string of length } k\}
$$

is undecidable. Do this with a reduction involving A_{TM} or $\overline{A_{\mathrm{TM}}}$. Make your proof succinct, legible, and logical. Write exclusively in grammatical English sentences.

Setup. Since A is r.e., we will show that it is undecidable by showing that $A_{\mathrm{TM}} \leq_{\mathrm{m}} A$. To do this, we must construct a Turing-computable function that maps a string $\langle M, w\rangle$ to a string $\left\langle M^{\prime}, k\right\rangle$ such that TM M accepts w if and only if TM M^{\prime} accepts some string of length k.

Construction. Given $\langle M, w\rangle$ the reduction returns $\left\langle M^{\prime}, k\right\rangle$ where $k \geq 0$ is an arbitrary fixed value, say $k=0$, and TM M^{\prime} is the following machine:

Machine M^{\prime}, on input x :
Run M on w
If M accepts then accept
If M rejects then reject

Analysis. If M accepts w then we will have that $L\left(M^{\prime}\right)=\Sigma^{*}$, so M^{\prime} will accept a string of length k (as it accepts all strings of all lengths). On the other hand, if M does not accept w then $L\left(M^{\prime}\right)=\emptyset$ so M^{\prime} will not accept any string of length k (as it accepts no string of any length). Finally, the function that computes $\left\langle M^{\prime}, k\right\rangle$ from $\langle M, w\rangle$ is clearly computable.

