Practice Midterm Exam

Instructions: Relax. Smile. Be happy. Then think about each question for a few minutes before writing down a brief, correct answer!

Bon courage!
— Phil Rogaway

Name:

E-mail:

<table>
<thead>
<tr>
<th>On problem</th>
<th>you got</th>
<th>out of</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>40</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>35</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>25</td>
</tr>
<tr>
<td>Σ</td>
<td></td>
<td>100</td>
</tr>
</tbody>
</table>
1 Short Answer [40 points]

(1) Draw a DFA that accepts $L = \{x \in \{a, b\}^* : x$ starts and ends with different characters$\}$.

(2) Using the procedure we have seen in class, convert the following NFA into a DFA that accepts the same language.
(3) You are given a regular expression α. Describe a decision procedure (algorithm) that determines if $L(\alpha)$ contains an odd-length string.

(4) Using the construction given in class and in your text, convert the regular expression $\alpha = (01 \cup 1)^*$ into an NFA for the same language.
(5) Complete the definition (as given in class or your book): A context free grammar is a 4-tuple $G = (V, \Sigma, R, S)$ where\footnote{Don’t just tell me what V, Σ, R, S are called; tell me what they are, mathematically.}

(6) Use closure properties to show that $L = \{0^i1^j2^j : i, j \geq 0\}$ is not regular.
(7) Let REG be the language of all (fully parenthesized) regular expressions over the alphabet \{0, 1\}.

Thus sample strings in REG are:

ε

1

$((0 \circ 1) \cup 1)$

Prove that REG is CF by giving a CFG for it.

(8) With REG as defined above, prove that REG is not regular by using the pumping lemma.
2 Justified True or False [35 points]

Put an X through the correct box. Where it says “Explain” provide a brief (but convincing) justification. No credit will be given to correct answers that lack a proper justification. Where appropriate, make your justification a counter-example. Throughout, we use L and R to denote languages.

1. If \overline{L} is finite then L is regular.
 Explain:
 True False

2. Every regular language can be accepted by an NFA that has exactly 1,000,000 states.
 Explain:
 True False

3. Let R be regular and let L is a subset of R. Then L is regular.
 Explain:
 True False
4. If L is finite then L^* is infinite.
 Explain:

5. Suppose L has the following property: for some number N, every string $s \in L$ having length at least N can be partitioned into $s = xyz$ such that $|y| \geq 1$ and $xy^iz \in L$ for all $i \geq 0$. Then L is regular.
 Explain:

6. Every CFL L can be generated by a CFG G in which every rule $A \rightarrow \alpha$ satisfies $|\alpha| \leq 2$.
 Explain:

7. For L regular, let $d(L)$ be the number of states in a smallest DFA for L, and let $n(L)$ be the number of states in a smallest NFA for L. Then for any regular language L, $n(L) \leq (d(L))^2$.
 Explain:
3 A Closure Property of Regular Languages [25 points]

If L is a language over an alphabet Σ let

$$\text{Two-Less}(L) = \{y \in \Sigma^* : \text{for some string } x \text{ having } |x| \leq 2, xy \in L\}.$$

Part A. (A warm-up, just to make sure you understand the definition.) Is one a subset of the other: L and $\text{Two-Less}(L)$? If so, which is a subset of which?

Part B. (A warm-up, just to make sure you understand the definition.) Let $P = \{1^2, 1^3, 1^5, 1^7, 1^{11}, 1^{13}, \ldots\}$ be the set of prime numbers, encoded in unary. What’s the shortest string in 1^* which is not in $\text{Two-Less}(P)$?

Part C. (Now the main problem. This has nothing to do with Parts A or B.) Prove that if L is regular, than so is $\text{Two-Less}(L)$. (Describe any construction you use both in clear English and by a formal definition.)