Problem Set 9—Due March 15, 2005

Problem 9.1. Page 272, Problem 7.19.

Problem 9.2. A graph $G = (V, E)$ is said to be k-colorable if there is a way to paint its vertices using colors in $\{1, 2, \ldots, k\}$ such that no adjacent vertices are painted the same color. When k is a number, by $k\text{COLOR}$ we denote the language of (encodings of) k-colorable graphs. The language 3COLOR is NP-Complete. (You can assume this.) Use this to prove that the language 4COLOR is NP-Complete, too.

Problem 9.3. Page 273, Problem 7.24.