Problem 3 – Problem Set 3 – Due Wednesday, April 20, 2016

Problem 5.

Part 5A. Alice would like to privately send a bit \(a \in \{0, 1\} \) to Bob. They share a uniformly random key \(k \in \{0, 1, 2\} \). How can Alice send her bit to Bob in a way that achieves the property we called perfect privacy? Justify your answer.

Part 5B. Alice shuffles a deck of cards and deals it out to herself and Bob so that each gets half of the 52 cards. Alice now wishes to send a secret message \(M \) to Bob. Eavesdropper Eve is watching and sees the transmissions.

Suppose Alice’s message \(M \in \{0, 1\}^{48} \) is a string of 48 bits. Describe how Alice can communicate \(M \) to Bob in a way that achieves perfect privacy.

Part 5C. Now suppose Alice’s message \(M \in \{0, 1\}^{49} \) is 49 bits. Prove that there does not exist a protocol that allows Alice to communicate \(M \) to Bob in a way that achieves perfect privacy.

Problem 6. The RC4 algorithm maps a key \(K \in \text{Byte}^k \) to a keystream \(RC4(K) \), where \(k \in [1..255] \). Investigate empirically the probability \(p_i \) that the second byte of RC4 output is \(i \in \{0, \ldots, 9\} \) (written as a byte). For concreteness, assume a key length of \(k = 16 \) bytes. Now describe a simple adversary to distinguish RC4 output (with a random 16-byte key) from truly random bits. Estimate your adversary’s advantage.

Problem 7. Let \(\mathcal{F} : K \times N \times N \rightarrow \{0, 1\}^n \) be a stream cipher that, on input \((K, N, n)\), outputs an \(n \)-bit string. We defined the advantage of an adversary \(A \) in attacking \(\mathcal{F} \) to be

\[
\text{Adv}^1_{\mathcal{F}}(A) = \Pr[A^{\mathcal{F}(K, \cdot, \cdot)} \rightarrow 1] - \Pr[A^{\mathcal{F}(\cdot, \cdot, \cdot)} \rightarrow 1].
\]

The first oracle chooses a random key \(K \leftarrow \mathcal{K} \) and then, on input \((N, n)\), outputs \(\mathcal{F}(K, N, n) \). The second oracle, on input \((N, n)\), outputs \(n \) random bits. Either way, the adversary is not allowed to ask invalid queries or to repeat the first component (the \(N \)-value) of any query.

Consider a related definition for advantage, where we say

\[
\text{Adv}^2_{\mathcal{F}}(A) = 2 \Pr[b \leftarrow \{0, 1\}; \text{if } b = 1 \text{ then } K \leftarrow \mathcal{K}, f(\cdot, \cdot) \leftarrow \mathcal{F}(K, \cdot, \cdot) \text{ else } f \leftarrow \$ \text{ : } A^{f(\cdot, \cdot)} \rightarrow b] - 1.
\]

As before, the adversary is not allowed to ask invalid queries or to repeat \(N \)-values.

Give a clear English-language description of the adversary’s aim in the second definition. Then prove that the two notions are identical: \(\text{Adv}^1_{\mathcal{F}}(A) = \text{Adv}^2_{\mathcal{F}}(A) \).