Problem Set 5 – Due Wed, 13 Feb 2019 at 12pm

Problem 14. Bob proposes a 128-bit blockcipher, Tango32, that works like this. It has 16 S-boxes, \(S_1, \ldots, S_{16} \), each a permutation mapping 8-bits to 8-bits. It uses a 128-bit key that gets mapped into 32 subkeys, \(K_1, \ldots, K_{32} \), each 128 bits. To encrypt an input block \(X \), for each of 32 rounds \(i \), the cipher:

1. Replace \(X \) by \(X \oplus K_i \);
2. Replace the \(j \)-th byte of \(X \), \(X[j] \), by \(S_j[X[j]] \) (for each \(1 \leq j \leq 16 \));
3. Circularly rotate \(X \) by \(c_i \) byte position to the left, \(X \leftarrow X \lll 8i \), where \(c_i \in [1..32] \).

The ciphertext is the final value of \(X \).

Bob has carefully designed Tango32’s S-boxes, key schedule, and rotation constants.

Break Bob’s design using at most a few hundred plaintext/ciphertext pairs. Your break should be so bad that you can subsequently decrypt anything that’s encrypted with the same key.

Problem 15. CBC-Chain is a stateful blockcipher-based mode of operation. To encrypt, we use CBC with an IV that is the last ciphertext block produced from the prior encryption. Initially, the IV is a random string.

Part A. Formally define key generation, encryption, and decryption for CBC-Chain\([E] \) given a blockcipher \(E: \{0,1\}^k \times \{0,1\}^n \rightarrow \{0,1\}^n \).

Part B. Show that CBC-Chain\([E] \) is never IND-secure by giving a devastating, two-query attack on it.

Problem 16. Can a blockcipher \(E: \{0,1\}^{128} \times \{0,1\}^{128} \rightarrow \{0,1\}^{128} \) be secure as a PRP if it has the following characteristics? Briefly justify each answer. Where necessary, interpret numbers as 128-bit strings.

Part A. The first bit of \(E_K(X) \) doesn’t depend on the last bit of \(X \).
Part B. The first bit of \(E_K(X) \) doesn’t depend on the last bit of \(K \).
Part C. \(\bigoplus_{i=1}^{10} E_K(i) = 0 \).
Part D. \(E_K^{-1}(0) = E_K(1) \).
Part E. \(E_K(K) = K \).