Problem Set 6 – Due Wed, 27 Feb 2019 at 12pm

Problem 17. Fix a blockcipher E with an 8-byte (64-bit) blocksize. Consider the following generalization of CBC to allow the encryption of arbitrary byte strings. Given a byte string M, let $\text{pad}(M)$ be M followed by enough bytes to take you to the next multiple of eight bytes, where the extra bytes are either: 01, or 02 02, or 03 03 03, and so on, up to 08 08 08 08 08 08 08 08 (all of these constants written in hexadecimal). Let CBC2 be the variant of CBC encryption that encrypts M by applying CBC over E, with a random IV, to $\text{pad}(M)$.

The CBC2 method is specified in Internet Standard RFC 2040. Note that a CBC2 ciphertext for M will have the form $C = IV \parallel C'$ where $|IV| = 64$ and $|C'|$ is the least multiple of 64 exceeding $|M|$.

17.1. Do you believe that CBC2 achieves “good” (at least birthday-bound) ind*-security when E is a good PRP? Why or why not?

17.2. Write a careful fragment of pseudocode for an algorithm D to decrypt a byte string C under CBC2. Have $D(K, C)$ return the distinguished symbol \bot if it is provided an invalid ciphertext; otherwise, it returns a byte string M.

17.3. Suppose an adversary is given an oracle, Valid, that, given a ciphertext C, returns the bit “1” if C is valid, meaning $D(K, C) \in \{0, 1\}^*$, and returns the bit “0” if it is not, meaning $D(K, C) = \bot$. Show how to use the oracle to decipher a block $Y = E_K(X)$ for an arbitrary eight-byte X. (Hint: all your queries to the Valid oracle will be 16 bytes, and I don’t mind if you make hundreds or thousands of them.)

17.4. Show how to decrypt any ciphertext $C = \text{CBC2}(K, M)$ given a Valid oracle.

17.5. Is CBC2 CCA secure?

17.6. What advice would you give to security practitioners who were considering the use of CBC2 in their networking protocol?

Problem 18. Fix a blockcipher $E : K \times \{0, 1\}^n \to \{0, 1\}^n$ and let CBCMAC$_K(M)$ be the CBC MAC, using E_K, of a message M that is a positive multiple of n bits. We have seen that this construction is not secure as a (variable-input-length) MAC.

18.1. Consider the construction CBCMAC$_{2K'}(M) = \text{CBCMAC}_{K}(M) \oplus K'$ where $K' \in \{0, 1\}^n$. Show that this is a bad MAC—that you can easily forge.

18.2. When strings x and y are strings with $|x| > |y|$, define $x \oplus y = x \oplus 0^{|x|−|y|}y$. When x is a string and n is a fixed value, define $x10^i$ as $x10^i$ for the smallest $i \geq 0$ such that $|x10^i|$ is a multiple of n. Now consider the construction CBCMAC$_{3K'}(M) = \text{CBCMAC}_{K}(M \oplus K')$ when $|M|$ is a positive multiple of n; and CBCMAC$_{3K'}(M) = \text{CBCMAC}_{K}(M10^i \oplus K')$ otherwise. Here $|K'| = n$. Show that CBCMAC3 is a bad MAC—that you can easily forge.
Problem 19. Fix a value $n \geq 1$ and the finite field \mathbb{F} having 2^n points. Represent points in \mathbb{F} by n-bit strings in the usual way. Now consider the hash function $H : K \times (\{0,1\}^n)^+ \rightarrow \{0,1\}^n$ where a string $M = M_1 \cdots M_m$, for $M_i \in \{0,1\}^n$, hashes to

$$H_K(M) = M_1K_1 + \cdots + M_mK_m + K_{m+1}. $$

Here $K = (K_1, K_2, \ldots)$ is the key for the hash function, each $K_i \in \mathbb{F}$, and all arithmetic is done in \mathbb{F}. A random key from K is an infinite list of n-bit strings, each uniformly and independently drawn.

19.1. Prove that H is ε-AU where $\varepsilon = 2^{-n}$.

19.2. Show H is not ε-AU, for a small ε, if you omit the last addend in the definition of the hash.

19.3. Name one significant advantage of H and one significant disadvantage of H compared to the polynomial-evaluation hash that I described in class.