Syntax: An AEAD scheme is a 3-tuple $\Pi = (K, E, D)$ where
- K is a probabilistic algorithm that returns a string;
- E is a deterministic algorithm that maps a tuple (K, N, A, M) to a ciphertext $C = E(K, N, A, M)$ of length $|M| + \tau$; and
- D is a deterministic algorithm that maps a tuple (K, N, A, C) to a plaintext M or the symbol \perp.

If $C = E(K, N, A, M) \neq \perp$ then $D(K, N, A, C) = M$.

All-in-one definition

$$\text{Adv}_{\Pi}^{\text{aead}}(A) = \Pr[A^{E(K, \ldots), D(K, \ldots)} \Rightarrow 1] - \Pr[A^{\perp(\ldots)} \Rightarrow 1]$$

- A may not repeat any N query to its Enc oracle.
- It may not ask Dec(N, A, C) after an Enc(N, A, M) returned C.

Two-part definition

$$\text{Adv}_{\Pi}^{\text{priv}}(A) = \Pr[A^{E(K, \ldots)} \Rightarrow 1] - \Pr[A^{\perp(\ldots)} \Rightarrow 1]$$

- A may not repeat any N query.

$$\text{Adv}_{\Pi}^{\text{auth}}(A) = \Pr[A^{E(K, \ldots)} \text{ forges}]$$

- It outputs an (N, A, C) where $D(K, N, A, C) \neq \perp$ and no prior oracle query of (N, A, M) returned C.
En route to CMAC
[Black, Rogaway 2000]
with a tweak from
[Iwata, Kurosawa 2003]
En route to CMAC
[Black, Rogaway 2000]
with a tweak from
[Iwata, Kurosawa 2003]
En route to CMAC

[Black, Rogaway 2000]
with a tweak from
[Iwata, Kurosawa 2003]
CMAC
[Black, Rogaway 2000]
with a tweak from
[Iwata, Kurosawa 2003]

\[K2 = 2 \cdot E_{K1}(0) \]
\[K3 = 4 \cdot E_{K1}(0) \]