Syntax: An AEAD scheme is a 3-tuple $\Pi = (\mathcal{K}, \mathcal{E}, \mathcal{D})$ where

- \mathcal{K} is a probabilistic algorithm that returns a string;
- *E* is a deterministic algorithm that maps a tuple (*K*, *N*, *A*, *M*) to a ciphertext *C*= *E*(*K*, *N*, *A*, *M*) of length |*M*|+τ; and
- *D* is a deterministic algorithm that maps a tuple (*K*, *N*, *A*, *C*) to a plaintext *M* or the symbol ⊥

If $C = \mathcal{E}(K, N, A, M) \neq \bot$ then $\mathcal{D}(K, N, A, C) = M$

All-in-one definition

$$\mathbf{Adv}_{\Pi}^{\text{aead}}(A) = \Pr[A^{\mathcal{E}(K, \dots), \mathcal{D}(K, \dots)} \Rightarrow 1] - \Pr[A^{\mathbb{S}(\dots), \perp(\dots)} \Rightarrow 1]$$

A may not repeat any N query to its Enc oracle.
It may not ask $\operatorname{Dec}(N, A, C)$ after an $\operatorname{Enc}(N, A, M)$ returned

Two-part definition

$$\mathbf{Adv}_{\Pi}^{\mathrm{priv}}(A) = \Pr[A^{\mathcal{E}(K, \cdots)} \Rightarrow 1] - \Pr[A^{\mathbb{S}(\cdots)} \Rightarrow 1]$$

A may not repeat any N query.

$$\mathbf{Adv}_{\Pi}^{\mathrm{auth}}(A) = \Pr[A^{\mathcal{E}(K, \cdots)} \text{ forges}]$$

It outputs an (*N*, *A*, *C*) where $\mathcal{D}(K, N, A, C) \neq \perp$ and no prior oracle query of (*N*, *A*, *M*) returned *C*

En route to CMAC

[Black, Rogaway 2000] with a tweak from [Iwata, Kurosawa 2003]

En route to CMAC

[Black, Rogaway 2000] with a tweak from [Iwata, Kurosawa 2003]

En route to CMAC

[Black, Rogaway 2000] with a tweak from [Iwata, Kurosawa 2003]

CMAC

[Black, Rogaway 2000] with a tweak from [Iwata, Kurosawa 2003] $K2 = 2 \cdot E_{K1}(\mathbf{0})$ $K3 = 4 \cdot E_{K1}(\mathbf{0})$