Syntax: An AEAD scheme is a 3-tuple $\Pi=(\mathcal{K}, \mathcal{E}, \mathcal{D})$ where

- \mathcal{K} is a probabilistic algorithm that returns a string;
- \mathcal{E} is a deterministic algorithm that maps a tuple ($\mathrm{K}, \mathrm{N}, \mathrm{A}, \mathrm{M}$) to a ciphertext $\mathrm{C}=\mathcal{E}(\mathrm{K}, \mathrm{N}, \mathrm{A}, \mathrm{M})$ of length $|\mathrm{M}|+\tau$; and
- \mathcal{D} is a deterministic algorithm that maps a tuple ($\mathrm{K}, \mathrm{N}, \mathrm{A}, \mathrm{C}$) to a plaintext M or the symbol \perp
If $\mathrm{C}=\mathcal{E}(\mathrm{K}, \mathrm{N}, \mathrm{A}, \mathrm{M}) \neq \perp$ then $\mathcal{D}(\mathrm{K}, \mathrm{N}, \mathrm{A}, \mathrm{C})=\mathrm{M}$

All-in-one definition

$$
\operatorname{Adv}_{\Pi}^{\text {aead }}(\mathrm{A})=\operatorname{Pr}\left[\mathrm{A}^{\mathcal{\varepsilon}(\mathrm{K}, \ldots), \mathcal{D}(\mathrm{K}, \ldots)} \Rightarrow 1\right]-\operatorname{Pr}\left[\mathrm{A}^{\$(\cdots), \perp(\cdots)} \Rightarrow 1\right]
$$

A may not repeat any N query to its Enc oracle.
It may not ask $\operatorname{Dec}(\mathrm{N}, \mathrm{A}, \mathrm{C})$ after an $\operatorname{Enc}(\mathrm{N}, \mathrm{A}, \mathrm{M})$ returned C.

Two-part definition

$$
\begin{aligned}
& \mathbf{A d v}_{\Pi}^{\text {priv }}(\mathrm{A})=\operatorname{Pr}\left[\mathrm{A}^{\mathcal{\varepsilon}(\mathrm{K}, \ldots)} \Rightarrow 1\right]-\operatorname{Pr}\left[\mathrm{A}^{\$(\cdots)} \Rightarrow 1\right] \\
& \text { A may not repeat any } \mathrm{N} \text { query. } .
\end{aligned}
$$

$\operatorname{Adv}_{\Pi}^{\text {auth }}(\mathrm{A})=\operatorname{Pr}\left[\mathrm{A}^{\varepsilon(\mathrm{K}, \cdots)}\right.$ forges $]$
It outputs an $(\mathrm{N}, \mathrm{A}, \mathrm{C})$ where $\mathcal{D}(\mathrm{K}, \mathrm{N}, \mathrm{A}, \mathrm{C}) \neq \perp$ and no prior oracle query of $(\mathrm{N}, \mathrm{A}, \mathrm{M})$ returned C

En route to CMAC

[Black, Rogaway 2000]
with a tweak from
[Iwata, Kurosawa 2003]

En route to CMAC

[Black, Rogaway 2000] with a tweak from
[Iwata, Kurosawa 2003]

En route to CMAC
 [Black, Rogaway 2000]
 with a tweak from
 [Iwata, Kurosawa 2003]

CMAC

[Black, Rogaway 2000] with a tweak from [Iwata, Kurosawa 2003]

$$
K 2=2 \cdot E_{K 1}(\mathbf{0})
$$

$K 3=4 \cdot E_{K 1}(\mathbf{0})$

