1) Move the coins out of \mathcal{E} — make it deterministic [RBBK01]

To improve resistance to random-number generation problems
To architect to existing abstraction boundaries

2) Add in “associated data” (AD) [R02]

To authenticate headers

Syntax: An AEAD scheme is a 3-tuple $\Pi = (\mathcal{K}, \mathcal{E}, \mathcal{D})$ where
- \mathcal{K} is a probabilistic algorithm that returns a string;
- \mathcal{E} is a deterministic algorithm that maps a tuple (K, N, A, M) to a ciphertext $C = \mathcal{E}(K, N, A, M)$ of length $|M| + \tau$; and
- \mathcal{D} is a deterministic algorithm that maps a tuple (K, N, A, C) to a plaintext M or the symbol \bot

If $C = \mathcal{E}(K, N, A, M) \neq \bot$ then $\mathcal{D}(K, N, A, C) = M$
\[\text{Adv}^{\text{aead}}_\mathcal{E}(\mathcal{A}) = \Pr[\mathcal{A}^{\mathcal{E}_K, \mathcal{D}_K} \rightarrow 1] - \Pr[\mathcal{A}^{\$, \bot} \rightarrow 1] \]

\(\mathcal{A}\) may not:
- Repeat an \(N\) in an enc query
- Ask a dec query \((N, A, C)\) after \(C\) is returned by an \((N, A, \cdot)\) enc query
\(\text{Adv}^\text{priv}_\mathcal{E}(\mathcal{A}) = \Pr[\mathcal{A}^{\mathcal{E}_K} \rightarrow 1] - \Pr[\mathcal{A}^{\$} \rightarrow 1] \)

\(\mathcal{A} \) may not:

- Ask a dec query \((N, A, C)\) after \(C\) is returned by an \((N, A, \cdot)\) enc query
\[\text{Adv}_\mathcal{E} (A) = \Pr[A \text{ forges}] \]

It outputs an \((N^*, A^*, C^*)\) where \(D(K, N^*, A^*, C^*) \neq \perp\) and no prior oracle query of \((N^*, A^*, M)\) returned \(C^*\)
All-in-one definition

\[\text{Adv}^{\text{aead}}(A) = \Pr[A^{\mathcal{E}(K, \cdots), \mathcal{D}(K, \cdots)} \Rightarrow 1] - \Pr[A^{\mathcal{E}(\cdots), \bot} \Rightarrow 1] \]

A may not repeat any \(N \) query to its Enc oracle. It may not ask Dec\((N, A, C)\) after an Enc\((N, A, M)\) returned \(C \).

Two-part definition

\[\text{Adv}^{\text{priv}}(A) = \Pr[A^{\mathcal{E}(K, \cdots)} \Rightarrow 1] - \Pr[A^{\mathcal{E}(\cdots)} \Rightarrow 1] \]

A may not repeat any \(N \) query.

\[\text{Adv}^{\text{auth}}(A) = \Pr[A^{\mathcal{E}(K, \cdots)} \text{ forges}] \]

It outputs an \((N, A, C)\) where \(\mathcal{D}(K, N, A, C) \neq \bot \) and no prior oracle query of \((N, A, M)\) returned \(C \).
Generic composition

Encrypt-and-MAC

MAC-then-Encrypt

Encrypt-then-MAC

[Bellare, Namprempre 2000]
SIV mode
[Rogaway, Shrimpton 2006]

PRF operating on a vector of strings

ivE encryption scheme (eg, CTR), secure
AES-GCM-SIV

K → DeriveKey → K_1 → POLYVAL Hash → S

N → $R_{64}(AES_K(N \ 0))$ → $R_{64}(AES_K(N \ 1))$ → K_1

$R_{64}(AES_K(N \ 2))$ → K_2 → AES → T

0 → $R_{127}(S)$ → \oplus → 0 → N

Additions: no carry out of last 32 bits

Close to GHASH but adjusted to better match AES-NI: $\sum \alpha_i M_i K_1^i$
Thm [Jonsson 2002] CCM is provably secure if E is a good PRP.
GCM

[McGrew, Viega 2004]

(Follows CWC

[Kohno, Viega, Whiting 2004])

NIST SP 800-38D:2007

RFC 4106, 5084, 5116, 5288, 5647

ISO 19772:2009

Thm [Iwata, Ohashi, and Minematsu 2012] (correcting [McGrew, Viega 2004])

GCM is provably secure (not great bounds) if E **is a good PRP.**
OCB (v3) [Krovetz Rogaway 2011], following [RBBK01,LRW02,R04] RFC 7253

Thm [Krovetz, Rogaway 2011]

OCB is provably secure (OK bounds) if E is a strong PRP.
Tweakable Blockcipher (TBC)

\[\tilde{E} : \mathcal{K} \times \mathcal{T} \times \{0,1\}^n \rightarrow \{0,1\}^n \]

each \(\tilde{E}_K^T(\cdot) = \tilde{E}(K, T, \cdot) \) a permutation

\[\text{Adv}^{\text{prp}}_{\tilde{E}}(A) = \Pr[A \tilde{E}_K \Rightarrow 1] - \Pr[A \pi \Rightarrow 1] \]

A \(\mathcal{T} \)-indexed family of random permutations on \(n \) bits
This is the official public announcement of the portfolio, bringing the CAESAR competition to a close. ... [H]ere is the final portfolio:

Use case 1: Ascon first choice, ACORN second choice.
Use case 2: AEGIS-128 and OCB, without a preference.
Use case 3: Deoxys-II first choice, COLM second choice.

<p>| |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>57 round-1</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Mar 2014</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>29 round-2</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Mar 2014</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>16 round-3</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Aug 2016</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>7 finalists</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Mar 2018</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>6 winners</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Feb 209</td>
</tr>
</tbody>
</table>
Deoxys-II
Jean, Nikolić, Peyrin, Seurin

Thm: Provably secure, with excellent bounds, if E is a TBC.
The fastest CAESAR finalist on recent Intel processors

0.43 cpb (Skylake)
(0.25 cpb for AEGIS-128L on 16K messages)

AEGIS
AEGIS-128
[Wu, Preneel 2013]