Today:
- Sets of strings (languages)
- Regular expressions

Distinguished Lecture after class:
"Some Hash-Based Data Structures and Algorithms Everyone Should Know"
Prof. Michael Mitzenmacher, Harvard

Sets of STRINGS (elements of formal language theory)

Define and give examples:

Alphabet – a finite nonempty set (of “characters”) \(\Sigma \)

Strings - a finite sequence of characters drawn from some alphabet.
- operation: **concatenation**, \(xy \) or \(x \circ y \)

Language – a set of strings, all of them over some alphabets
- extend concatenation to languages

Empty string \((\varepsilon) \)

General set operations: union, intersection, complement; and concatenation

\(A^* \) -- Kleene closure – **define it** - \(\bigcup_{i \geq 0} A^i \)

\(A^0 = \{ \varepsilon \} \) (why? For \(A^i \ A^i = A^{i+1} \))

\(\Sigma^* \)

BYTES = \(\{0,1\}^8 \)

BYTES*

ENGLISH-WORDS = \{a, aah, aardvark, aardwolf, aba,..., zymotic, zymurgy\}

PRIMES = ...

SAT = ...

The relationship between languages and **decision questions**.

![Decision Diagram](attachment:image.png)

Regular expression over \(\Sigma \):
1) a is a regular expression, for every $a \in \Sigma$. Also, symbols ε and \emptyset are regular expressions.

2) If α and β are regular expressions, then so are $(\alpha \circ \beta)$, $(\alpha \cup \beta)$, (α^*)

We routinely omit parenthesis, understanding it as a shorthand, with * binding most tightly, then concatenation, then union.

Example: a number

$$(0 \cup 1 \cup 2 \cup 3 \cup 4 \cup 5 \cup 6 \cup 7 \cup 8 \cup 9)^* (0 \cup 1 \cup 2 \cup 3 \cup 4 \cup 5 \cup 6 \cup 7 \cup 8 \cup 9)^*$$

A real number in decimal notation

$$(0 \cup 1 \cup 2 \cup 3 \cup 4 \cup 5 \cup 6 \cup 7 \cup 8 \cup 9)(0 \cup 1 \cup 2 \cup 3 \cup 4 \cup 5 \cup 6 \cup 7 \cup 8 \cup 9)^*$$. $(0 \cup 1 \cup 2 \cup 3 \cup 4 \cup 5 \cup 6 \cup 7 \cup 8 \cup 9)^*$.

An even number in binary

$(0 \cup 1)^0$

Bit strings that start and top with the same bit (having at least one bit)

$00^* \cup 11^* \cup 0(0 \cup 1)^*0 \cup 1(0 \cup 1)^*1$

The complement of that set

$\varepsilon \cup 0(0 \cup 1)^*1 \cup 1(0 \cup 1)^*0$

Exercise 1: write a regular expression for all strings over $\{0,1\}$ that contain _some_ $'111'$.

$(0u1)^* 111 (0u1)^*$

Exercise 2: write a regular expression for all strings over $\{a,b\}$ whose length is divisible by 3.

$(aub)(aub)(aub))^*$

Exercise 3: write a regular expression for all strings over $\{a,b\}$ whose length is NOT divisible by 3.

$(aub)(aub)(aub))^*(aub) u (aub)(aub)(aub))^*(aub)(aub)$

Exercise 4: write a regular expression for all strings over $\{0,1\}$ that contain an even # of 0's and an even # of 1's.

Kind of hard

Exercise 5: write a regular expression for all strings over $\{0,1\}$ that contain the same number of 0’s and 1’s.

CAN’T BE DONE. Why? Take ECS120!

Relations
(Change of topics. But do define some relations on strings, regular
languages, and DFAs to tie the two topics together.)

DEF: A and B sets. Then a *relation* R is subset of $A \times B$.

$R \subseteq A \times B$

Variant notation: $x \mathbin{R} y$ for $(x,y) \in R$

May use a symbol like ~ or < for a relations

$x \sim y$ if $(x,y) \in \sim$

Relations in arithmetic, where A and B are both natural numbers:

$= < <= > =$

| | divides

what about succ, +, * **NO:** function symbols, not relations

In set theory:

\in

what about \emptyset **NO:** constant symbol

Relations are useful for things other than numbers and sets and the like:

$S =$ all UCD students for F13

$C =$ all UCD classes for F13

$P =$ all UCD professors for F13

$E: \text{enrolled relation} \subseteq S \times C$

$s \mathbin{E} c$ (ie, $(s,c) \in E)$ - x is taking class y

$T: \text{teaches relation} \subseteq C \times P$

$c \mathbin{T} p$ (ie, $(c,p) \in T)$ - professor p is teaching class c this term

You can *compose* relations

what _should_

$E \circ T$

mean, do you think

$E \circ T \subseteq S \times P$

$S \times C \quad C \times P \quad \rightarrow \quad S \times P$

$s \mathbin{E \circ T} p$ if there exists c in C such that $s \mathbin{E} c$ and $c \mathbin{T} p$ -- student s is taking some course that p is teaching -- p is s's teacher this term

What I've just given is the general definition

$R \subseteq X \times Y$

$S \subseteq Y \times Z$ then $R \circ S \subseteq X \times Z$ is \{(x,z): \exists y \text{ in } Y \mathbin{Ry} \text{ and } y \mathbin{Sz}\}

What _should_ R^{-1} should be?

formalize
if \(R \subseteq X \times Y \) is a relation that \(R^{-1} \) is the relation on \(Y \times X \) where \((y,x) \in R^{-1} \iff x \in R \ y\).

More examples:
Often \(X = Y \) is the *same* set
Relations on natural numbers, real numbers, strings, etc.

\(X = \) set of strings
\(x \leq y \) "is a substring of y"

\(\alpha \) and \(\beta \) are regular expressions.
\(\alpha \sim \beta \) if \(L(\alpha) = L(\beta) \)

T/F: \((0u1)^* (0u1)^* \sim (00 \ u \ 01 \ u \ 10 \ u \ 11)^* \) TRUE
\(e \sim e^* \) TRUE
\(0(0u1)0 \sim 1(0u1)1 \) FALSE

Relations, continued. Let \(R \) be a relation on \(A \times A \)
We say that \(R \) is

Reflexive: if \(x \in R \ x \) for all \(x \)
Symmetric: if \(x \in R \ y \rightarrow y \in R \ x \) for all \(x, y \)
Transitive: if \(x \in R \ y \) and \(y \in R \ z \rightarrow x \in R \ z \) for all \(x, y, z \)

If \(R \) has all three properties, \(R \) is said to be an equivalence relation

<table>
<thead>
<tr>
<th></th>
<th>Reflexive</th>
<th>Symmetric</th>
<th>Transitive</th>
<th>comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>= on Integers</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>(or anything else)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\leq) , integers</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>antisymmetric</td>
</tr>
<tr>
<td>(\subseteq) , sets</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>antisymmetric</td>
</tr>
<tr>
<td>(x \in E \ y) if (x) and (y) are regular expressions and the regular (L(x) = L(y))</td>
<td>Yes</td>
<td>Yes</td>
<td>blocks are languages</td>
<td></td>
</tr>
<tr>
<td>(x \in S \ y) if (x) is a substring of (y)</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>(x \in R \ y) where (x) and (y) are strings and (M) is a some DFA and you go to the same state on processing</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
</tbody>
</table>
x and y
x | y if 3 | x-y
- y Yes Yes Carefully
prove this one
out its blocks.

n | m

We only got to here – and then I jumped ahead to defining functions. We’ll take up equivalence classes and
quotients next time, as well as properties of functions, like injectivity and surjectivity.

4. Functions

Definition: A function f is a relation on A x B such that
there is one and only one pair a R b for every in A.

We write b=f(a) to mean that (a,b) in f.

(Just one way to do it: we could have defined functions as the primitive
and used the function to define the relation, putting in a pair
(a,f(a)) for every a in A.)

- We call A the domain of f, Dom(f).
- We call B the *codomain* (or *target*) of f.
 Note that this does not mean the set {b: f(a)=b for some a in A}!
 That is a different (and important) st called the *Range* (or *image*)
 of f. Denote it f(A).

Example 1:
Domain={1,2,3}
f(a) = a^2.
Dom(f) = {1,2,3}
f(A) = {1,4,9}

co-domain: unclear, might be \N, might be \R,

Example 2:
Domain = students in this class
b(x) = birthdays, encoded as {1,..,12} x {1..31}.

b(phil) = (7,31)
b(ellen) = (4,1)

Example 3:
f: \R -> \R defined by f(x) = x^2
is it a function?
Represent it as a graph

Two functions f and g are equal, f=g, if their domains and ranges are equal
and f(x) = g(x) for all x in Dom(f)

Function composition
\[f \circ g \]
\[f: A \rightarrow B, \quad g: B \rightarrow C \]
the \((g \circ f): A \rightarrow C\) is defined by
\[(g \circ f)(x) = g(f(x))\]

Kind of "backwards" notation, but fairly tradition. Some algebrists will reverse it, \((x) \ (f \circ g)\) "function operates on the left"

Some computer scientists like to denote functions by "lambda expressions"
To say that \(f\) is the function that maps \(x\) to \(x^2\) we write
\[f = \lambda x. x^2 \]
Here \(x\) is just a formal variable;
\[\lambda x. x^2 = \lambda y. y^2 \]
The domain is not explicitly

Functions don't have to be defined on numbers, of course

\[|x| = \text{maps } \Sigma^* \rightarrow \mathbb{N} \]
\[\text{hd}(x) = \text{the first character of the string } x, \ x \neq \text{emptystring} \]
\[\text{tl}(x) = \text{all but the first character of } x \ (\text{define how when } x=\text{emptystring})? \]
\[\text{dim}(A) = \text{the dimensions of the matrix } A, \text{ regarded as a pair of natural numbers} \]