Problem Set 1

Please turn in your (\LaTeX'ed) solutions at the beginning of class on Wednesday, January 22. Remember that if you work with others, you should please turn in a single writeup.

For something here you might need to employ a hybrid argument, which I am hoping you will manage to discover on your own. The mathematical tool underlying a hybrid argument is just the triangle inequality: \(|a - b| \leq |a - c| + |b - c|.|}

Problem 1. In our lecture-by-lecture outline I put lines to three papers on the telephone coin-flipping problem: [Blum 1982]; [Cleve 1986]; and [Moran, Naor, Segev 2009]. Read what you can understand of at least one of these papers. (I am not asking you to read any of them in full, let alone all.) Then write a coherent couple of paragraphs (in your own, impeccably clear prose) to describe a result or idea that you understood.

Problem 2.

Part A. A natural way to formalize a probabilistic Turing machine is to provide it a distinguished state \(q_S\) out of which it transitions to a state \(q_H\) with probability 0.5, transitioning to a state \(q_T\) otherwise. Show that such a formulation is inadequate to enable a TM \(M\) that runs in any fixed amount of time \(T\) to perfectly shuffle a deck of cards.\(^1\)

Because of the above, we should henceforth assume a different formulation of probabilistic Turing machines, where the machine can write positive numbers \(n, m, n \leq m\), on a distinguished query tape and then it enters state \(q_H\) with probability \(n/m\), and state \(q_T\) otherwise.

Part B. Alice shuffles a deck of cards and deals it out to herself and Bob so that each gets half of the 52 cards. Alice now wishes to send a secret message \(M\) to Bob by saying something aloud. Eavesdropper Eve is listening in: she hears everything Alice says (but Eve can’t see the cards).

Suppose Alice’s message \(M\) is a string of 48-bits. Describe how Alice can communicate \(M\) to Bob in such a way that Eve will have no information about what is \(M\). You do not need to concern yourself with “encoding-level” details.

Part C. Now suppose Alice’s message \(M\) is 49 bits. Explain why there exists no protocol that allows Alice to communicate \(M\) to Bob in such a way that Eve will have no information about \(M\).

Problem 3. Let \(g: \{0, 1\}^n \rightarrow \{0, 1\}^N\) be a function (a “pseudorandom generator”, or PRG), and let \(A\) be an adversary. Define the advantage \(A\) gets in attacking \(g\) as

\[\text{Adv}_{g}^{\text{prg}}(A) = \text{Pr}[A^{g(S)} \Rightarrow 1] - \text{Pr}[A^{S} \Rightarrow 1] \]

In the first experiment the oracle responds to each query by computing \(s \leftarrow \{0, 1\}^n\) and returning \(g(s)\). We are looking at the probability the adversary outputs 1 after interacting with that oracle. In the second experiment the oracle responds to each query by computing \(y \leftarrow \{0, 1\}^N\) and returning \(y\). We are again looking at the probability that the adversary then outputs 1.

Part A. Suppose there exists an adversary \(A\) that, making \(q\) queries, manages to obtain prg-advantage \(\delta\). Describe and analyze an adversary \(B\), about as efficient as \(A\), that gets advantage \(\delta' = \delta/q\) while asking only a single query.

\(^1\)To perfectly shuffle a deck of cards means that the machine outputs a uniformly random list of distinct numbers from 1 to 52.
Part B. Consider a different kind of advantage for $g: \{0,1\}^n \rightarrow \{0,1\}^N$, the “next-bit-test” advantage. The adversary A makes a query $\ell \in [0..N - 1]$ and is then given the first ℓ bits of $y = g(s)$ for a random $s \leftarrow \{0,1\}^n$. The adversary tries to predict the next bit, $y[\ell + 1]$, outputting its guess b as to this bit. The adversary’s nbt-advantage, $\text{Adv}^\text{nbt}_g(A)$, is twice the probability that she correctly predicts this bit, minus one.

Formalize and demonstrate that security in the prg-sense is equivalent, up to some factor you compute, to security in the nbt-sense.

Part C. Suppose you have a “good” PRG $g: \{0,1\}^n \rightarrow \{0,1\}^{n+1}$. Construct from it a “good” PRG $G: \{0,1\}^n \rightarrow \{0,1\}^{2n}$. Formalize and prove a result that captures the idea that G is secure if g is.