PMAC: A Parallelizable Message Authentication Code

John Black
Department of Computer Science
University of Nevada, Reno
jrb@cs.unr.edu
http://www.cs.unr.edu/~jrb

Phillip Rogaway
Department of Computer Science
UC Davis + CMU
rogaway@cs.ucdavis.edu
http://www.cs.ucdavis.edu/~rogaway
+66 1 530 7620 +1 530 753 0987

NIST Modes of Operation Workshop 2 – Aug 24, 2001 - Santa Barbara, California
What is a MAC

MAC^G: generate authentication tag
$\sigma = \text{MAC}^G_K([IV], M)$

MAC^V: verify authentication tag:
$\text{MAC}^V_K(M, \sigma)$

- Security addresses an adversary’s \textit{inability} to forge a \textit{valid} authentication tag for some \textit{new} message.
- Most MACs are \textit{deterministic}—they need no nonce/state/IV/$\$. In practice, such MACs are preferable. Deterministic MACs are usually PRFs.
CBC MAC

Inherently sequential

\[
\begin{align*}
M[1] & \xrightarrow{n} \ E_K \\
M[2] & \xrightarrow{n} \ E_K \\
\vdots & \xrightarrow{\ldots} \\
M[m] & \xrightarrow{n} \ E_K
\end{align*}
\]

Tag
PMAC’s Goals

• A fully parallelizable alternative to the CBC MAC
• But without paying much for parallelizability in terms of serial efficiency
• While we’re at it, fix up other “problems” of the CBC MAC
 - Make sure PMAC applies to any bit string
 - Make sure it is correct across messages of different lengths
What is PMAC?

- A variable-input-length pseudorandom function (VIL PRF):
 \[\text{PMAC: } \{0,1\}^k \times \{0,1\}^* \rightarrow \{0,1\}^n \]

- That you make from a fixed-input-length pseudorandom function (FIL PRF) – invariably a block cipher such as E=AES:
 \[\text{E: } \{0,1\}^k \times \{0,1\}^n \rightarrow \{0,1\}^n \]
PMAC’s Properties

- Functionality: VIL PRF: \(\{0,1\}^* \rightarrow \{0,1\}^n \)
 - Can’t distinguish \(\text{PMAC}_K(\cdot) \) from a random function \(R(\cdot) \)
- Customary use of a VIL PRF:
 - A (stateless, deterministic) Message Authentication Code (MAC)
- PRFs make the most pleasant MACs because they are deterministic and stateless.
- Few block-cipher calls: \(\left\lceil \frac{|M|}{n} \right\rceil \) to PMAC message \(M \)
- Low session-setup cost: about one block-cipher call
- Fully parallelizable
- No \(n \)-bit addition or mod \(p \) operations – just xors and shifts
- Uses a single block-cipher key
- Provably secure: If \(E \) is a secure block cipher
 - then \(\text{PMAC}-E \) is a good PRF
PMAC

if $|M[m]| < n$ then 0
if $|M[m]| = n$ then $z[-1]$

Σ'

FullTag

first τ bits

Tag
Definition of PMAC $[E,t]$
Related Work

• [Bellare, Guerin, Rogaway 95] – the XOR MAC. Not a PRF, but introduced central element of the construction
• [Bernstein 99] – A PRF-variant of the XOR MAC
• [Gligor, Donescu 00, 01] – Another descendent of the XOR MAC. Introduced the idea of combining message blocks with a sequence of offsets as an alternative to encoding. Not a PRF

• [Black, Rogaway 00] – Tricks for optimal handing of arbitrary input lengths (XCBC method you have just seen)

• [Carter-Wegman 79, 81] – A completely different approach that can achieve the same basic goals.
• Tree MAC (a la Merkle) – Another approach, not fully parallelizable.
The CBC MAC is in its “raw” form. Code is Pentium 3 assembly under gcc. This CBC MAC figure is inferior to Lipmaa’s OCB results, indicating that PMAC and OCB add so little overhead that quality-of-code differences contribute more to measured timing differences than algorithmic differences across CBC – CBCMAC – PMAC – OCB.
Since Lipmaa obtained 15.5 cpb for the CBC MAC, adding 8% to this, 16.7 cpb, is a conservative estimate for well-optimized Pentium code.
Provable Security

• Provable security begins with [Goldwasser, Micali 82]
• Despite the name, one doesn’t really prove security
• Instead, one gives reductions: theorems of the form
 \textbf{If} a certain primitive is secure
 \textbf{then} the scheme based on it is secure

For us:
 \textbf{If} AES is a secure block cipher
 \textbf{then} PMAC-AES is a secure authenticated-encryption scheme

Equivalently:
 \textbf{If} some adversary A does a good job at breaking PMAC-AES
 \textbf{then} some comparably efficient B does a good job to break AES

• Actual theorems quantitative: they measure how much security is “lost” across the reduction.
Block-Cipher Security
Security as a FIL PRP

$\text{Adv}^{\text{prp}}(B) = \Pr[B^{E_K} = 1] - \Pr[B^\pi = 1]$
PMAC’s Security
Security as a VIL PRF

Rand func oracle, R

$R(x_i)$

A

$PMAC_K(x_i)$

$Adv^{prf}(A) = \Pr[A^{PMAC_K} = 1] - \Pr[A^R = 1]$
PMAC Theorem

Suppose ∃ an adversary A that breaks PMAC-E with:

\[\text{time} = t\]
\[\text{total-num-of-blocks} = \sigma\]
\[\text{adv} = \text{Adv}^{\text{prf}}(A) \sigma^2 / 2^n\]

Then ∃ an adversary B that breaks block cipher E with:

\[\text{time} \approx t\]
\[\text{num-of-queries} \approx \sigma\]
\[\text{Adv}^{\text{prp}}(B) \approx \text{Adv}^{\text{prf}}(A) - \sigma^2 / 2^{n-1}\]

(To wrap up,
it is a standard result that any \(\tau\)-bit-output PRF can be used as a MAC, where the forging probability will be at most \(\text{Adv}^{\text{prf}}(A) + 2^{-\tau}\))

[Goldreich, Goldwasser, Micali]
[Bellare, Kilian, Rogaway]
<table>
<thead>
<tr>
<th>Protocol</th>
<th>Domain</th>
<th>PRF</th>
<th>MAC length</th>
<th>Parallelizable</th>
<th>#calls</th>
<th>Key bits</th>
<th>/ blk overhead</th>
</tr>
</thead>
<tbody>
<tr>
<td>CBCMAC</td>
<td>${0,1}^m$</td>
<td>✓</td>
<td>τ</td>
<td></td>
<td>$</td>
<td>M</td>
<td>/n$</td>
</tr>
<tr>
<td>XCBC</td>
<td>${0,1}^*$</td>
<td>✓</td>
<td>τ</td>
<td></td>
<td>$\lceil</td>
<td>M</td>
<td>/n \rceil$</td>
</tr>
<tr>
<td>[BR 00]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XECB-MAC</td>
<td>${0,1}^*$</td>
<td></td>
<td>$\tau+\nu$</td>
<td>✓</td>
<td>$\lceil</td>
<td>M</td>
<td>/n \rceil + \text{varies}$</td>
</tr>
<tr>
<td>(3 versions)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2 add</td>
</tr>
<tr>
<td>[GD 00,01]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PMAC</td>
<td>${0,1}^*$</td>
<td>✓</td>
<td>τ</td>
<td>✓</td>
<td>$\lceil</td>
<td>M</td>
<td>/n \rceil$</td>
</tr>
<tr>
<td>[BR 00,01]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
For More Information

• PMAC web page → www.cs.ucdavis.edu/~rogaway
 Contains FAQ, papers, reference code, test vectors...
• Feel free to call or send email
• Or grab me now!