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METHOD AND APPARATUS FOR
FACILITATING EFFICIENT
AUTHENTICATED ENCRYPTION

RELATED APPLICATION

This application 1s a divisional of, and claims priority
under 35 U.S.C. §120 to, U.S. patent application Ser. No.
11/728,286, entitled, “Method and Apparatus for Facilitating
Efficient Authenticated Encryption,” by inventor Phillip W.
Rogaway, filed 23 Mar. 2007. U.S. patent application Ser. No.
11/728,286 1s a continuation of, and claims priority under 35
U.S.C. §120 to, U.S. patent application Ser. No. 11/183,674
(U.S. Pat. No. 7,200,2277). U.S. patent application Ser. No.
11/183,674 1s a continuation-in-part of, and claims priority
under 35 U.S.C. §120 to, U.S. patent application Ser. No.
09/918,615 (U.S. Pat. No. 7,046,802).

BACKGROUND

1. Field of the Invention

The present mvention relates generally to cryptographic
techniques for the construction of symmetric (shared-key)
encryption schemes, and more particularly, to ways to use a
block cipher 1n order to construct a highly efficient encryption
scheme that simultaneously provides both message privacy
and message authenticity.

2. Related Art

When two parties, a Sender and a Recerver, communicate,
the parties often need to protect both the privacy and the
authenticity of the transmitted data. Protecting the privacy of
the data ensures that unauthorized parties will not understand
the content of transmissions. Protecting the authenticity of the
data provides assurance to the Recerver that the actual Sender
ol a message coincides with the claimed Sender of the mes-
sage (and it thereby provides assurance to the Receiver that
the message was not accidentally or intentionally modified in
transit). Both goals are often accomplished using symmetric
(“shared key”) techmiques, wherein the Sender and the
Receiver make use of a shared key K. We call “authenticated
encryption” the goal of simultaneously achieving both pri-
vacy and authenticity using shared-key techniques. In an
authenticated-encryption method, the Sender can encrypt a
message using a key and a nonce (also called an Initialization
Vector, or IV) to yield a ciphertext. The Receiver can decrypt
a ciphertext using a key and a nonce to yield either a message
or a special symbol, invalid, that indicates to the Recerver that
the ciphertext should be regarded as inauthentic.

The most common approach for authenticated encryption
uses two different tools: for privacy, a privacy-only encryp-
tion scheme, and for authenticity, a message authentication
code (MAC). Privacy-only encryption schemes compute a
ciphertext from a plaintext, a key, and a nonce. Message
authentication codes compute an authentication tag (which 1s
a fixed-length string) from a message and a key. To MAC a
message means to computes 1ts authentication tag using a
message authentication code.

Many constructions for privacy-only encryption schemes
and many constructions for message authentication codes are
known 1n the art. Some are described, for example, 1 the

book of Menezes, van Oorschot and Vanstone, Handbook of

Applied Cryptography, published by CRC Press, 1997. Both
privacy-only encryption schemes and message authentication
codes are commonly based on the use of a block cipher.

By way of further background, a block cipher 1s a function
E that takes a key K and a message block X, the key being a
binary string from some set of allowed keys and the message
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2

block being a binary string of some fixed length n. The block
cipher returns a ciphertext block Y=E,(X), which 1s also a
binary string of length n. The number n 1s called the block
length of the block cipher. It 1s required that for each key K,
the function E . 1s one-to-one and onto (1n other words, 1t 15 a
bijection on the space of n-bit strings). Since E .- 1s one-to-one
and onto, it has a well-defined inverse, denoted E . ~'. Well
known block ciphers include the algorithm of the Data
Encryption Standard (DES), which has a block length o1 n=64
bits, and the algorithm of the Advanced Encryption Standard
(AES), which has a block length of n=128 bits. We shall speak
of “applying a block cipher” or “enciphering” to refer to the
process of taking an n-bit string X and computing from 1t a
string Y=FE (X)) for some understood key K and block cipher
E. Similarly, we shall speak of “deciphering” to refer to the
process of taking an n-bit string Y and computing from 1t a
string X=E ' (Y).

The most common approach for privacy-only encryption
using an n-bit block cipher E 1s CBC encryption (cipher block
chaining encryption). In the “basic” form of CBC encryption,
the message M that we wish to encrypt must be a binary string
of length that 1s a positive multiple of the block length n. The
message M 1s partitioned 1nto n-bit blocks M[1], M[2], . . .,
M[m] by taking M[1] as the first n bits of M, taking M| 2] as
the next n bits of M, and so forth. An n-bit nonce, IV, 1s
selected. Then one encrypts M using the key K and the nonce
IV by computing, for each 1€[1 . . . m], the ciphertext block

Cli]=Eg(C[i-1]DM[i])

where C[O]=IV. The complete ciphertext 1s IV together with
the ciphertext C=C[1] ... C[m)].

Nonces are used quite generally for shared-key encryption.
A nonce 1s a value used at most once (or almost certainly used
at most once) within a given context. Most often, nonces are
realized using a counter or random value. For CBC encryp-
tion, a random value should be used; for CBC encryption,
there are problems with using a counter IV.

The most common approach for making a message authen-
tication code using an n-bit block cipher E 1s the CBC MAC
(cipher block chaining message authentication code). In the
“basic’” form of the CBC MAC, the message M to be authen-
ticated must be a binary string having a length that 1s a
positive multiple of n. The message M 1s partitioned into n-bit
blocks M[1], M|[2], ..., M|m] by taking M| 1] as the first n bits
of M, taking M]2] as the next n bits of M, and so forth. One
then computes the authentication tag of M, using key K, by
way of the same algorithm used for CBC encryption, but
where the IV=0, the block of n zero bits, and where the
authentication tag 1s the final ciphertext block, Tag=C[m].
Only Tag, or a prefix of Tag, 1s output as the authentication
tag. A Receiver who obtains an authenticated message M||Tag
checks the validity of M by re-computing the CBC MAC of M
under key K, obtaining a string Tag', and veritying that Tag' 1s
identical to Tag.

To combine CBC encryption and the CBC MAC, 1n order
to obtain both privacy and authenticity, use the generic com-
position method. One uses two keys: an encryption key Ke
and a message-authentication key Ka. In one method for
generic composition, the message M 1s CBC encrypted using
key Ka and nonce IV to yield an intermediate ciphertext
C. =IV||C[1]...C[m]. Then the intermediate ciphertext C,
1s MACed using the CBC MAC under key Ka to yield an
authentication tag Tag. The ciphertext for the authenticated-
encryption scheme is C=C[1] . .. C[m]||Tag. The Receiver, on
receipt of IV and C[1] . . . C[m]|[Tag, checks that Tag is the
CBC MAC of C, =IV||C[1] . .. C[m] under key Ka. If the

IRt

received Tag 1s what the Receiver computes 1t should be, the
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Receiver decrypts C[1] . . . C[m] using key Ke and nonce IV
to obtain the plaintext M. If the received Tag 1s different from
what the Recerver computes it should be, the Receiver rejects
the received ciphertext C=CJ[1] . .. C[m]||Tag, regarding it as
invalid.

The same generic-composition approach can be used to
combine any privacy-only encryption scheme with any mes-
sage authentication code.

There are a number of limitations to the generic composi-
tion approach. The main limitation 1s that two sequential
computing passes are made over the data, one to privacy-only
encrypt and one to MAC, making the process twice as slow as
privacy-only encryption (assuming that privacy-only encryp-
tion and MAC computation take about the same amount of
time, as they would for CBC encryption and the CBC MAC).
Privacy-only encryption can be computationally expensive,
and adding 1n a major additional expense to ensure message
authenticity 1s considered undesirable 1n many settings.

Because of the limitation just described, individuals have
tried for many years to merge privacy and authenticity into a
single, unified process that would be nearly as fast as conven-
tional ways to do privacy-only encryption. Until quite
recently, all such attempts failed. For a history of some of the
tailed attempts, see the survey article of Bart Preneel entitled
Cryptographic Primitives for Information Authentication—
State of the Art, appearing 1n State of the Art of Applied
Cryptography, COSIAC "97, Lecture Notes in Computer Sci-
ence, vol. 1528, Springer-Verlag, pp. 49-104, 1998. As an
example of a particularly recent attempt, Gligor and Donescu
describe an incorrect authenticated-encryption mode 1n their
paper Integrity Aware PCBC Encryption, appearing in Secu-
rity Protocols, 7" International Workshop, Cambridge, UK,
Apr. 19-21, 1999, Lecture Notes mn Computer Science, vol.
1’796, Springer-Verlag, pp. 153-171, 2000.

The first publicly disclosed authenticated-encryption
scheme that achieves nearly the speed of a conventional,
privacy-only encryption scheme, was developed by Charanyit
Jutla, of IBM. Jutla describes two authenticated-encryption
methods 1n his paper Encryption Modes with Almost Free
Message Integrity, which first appeared i the Cryptology
c¢Print Archive on Aug. 1, 2000. (Later versions of this paper
subsequently appeared m Advances in Cryptology—FEuroc-
rypt 2001, Lecture Notes in Computer Science, vol. 2045,
Springer-Verlag, May 2001, and as a submission to NIST (the
National Institute of Standards and Technology), posted on
NIST’s website on Apr. 17, 2001.) One of Jutla’s schemes 1s
similar to CBC encryption and is called IACBC. The other
one of Jutla’s scheme 1s parallelizable mode that Jutla calls
[APM. Jutla’s IACBC scheme is illustrated in FIG. 6, while
his IAPM scheme 1s illustrated in FIG. 7.

Both TACBC and IAPM are authenticated-encryption
schemes based on an n-bit block cipher, E. The modes require
that the message M which 1s to be encrypted has a length
which 1s a positive multiple of the block length n: say M=M
[1] . . . M|m], where each M]1] 1s n bits long. The schemes
employ two block-cipher keys, K1 and K2, which together
comprise the encryption key K=(K1, K2). Conceptually,
there are two processes involved: a “make-offset process™ and
a “main process”. The make-offset process 1s the same for
IACBC and IAPM, while the main process in the two
schemes differ.

Referring to the left hand side of FIGS. 6 and 7, the make-
offset process in IACBC and IAPM uses the key K2 to map a
random nonce, R, into a sequence of “pairwise independent™
offsets, Z=7[0], ..., Z[m], Z|m+1]. Notice that one needs two
more offsets than the message M 1s long (measured in blocks).
Each ofiset 1s n bits. Jutla describes two different methods to
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4

realize the make-offset process. We shall describe these meth-
ods shortly; for now we view the production of offsets as a

black-box process and we continue the explanation of the
main-process of JACBC and IAPM.

The main process ol IACBC 1s shown 1n the right-hand side
of FIG. 6. Having used the key K2 and the nonce R to derive
offsets Z[0], . . ., Z[m+1], encipher nonce R, now under key
K1, to determine an 1nitial chaining value, Y[0]=C[O]=E,
(R). Then CBC encrypt M=M]1] ... M|m]: forig[1...m], let
Y[i]=E . (Y[1-1]DM]1]). Next, mask each of these block-
cipher outputs to determine a ciphertext block: forie[1 ... m],
let C[1]=Y[1]DZ[1]. Call the string C=C[1] . . . C[m] is the
“ciphertext core”. Next one computes a “checksum™, Check-
sum, by xoring the message blocks: Checksum=M][1]D . . .
DOM|m]. Next one forms an “authentication tag” by setting
Tag=E -, (Checksum®@Y[m] PZ[0]. The complete ciphertext
specifies C[0], ciphertext core C=C]1] . .. C[m], and authen-
tication tag Tag.

Decryption proceeds by the natural algorithm, as will be
understood by those skilled 1n the art to which the present
invention pertains, rejecting the ciphertext if the supplied
authentication tag does not have the anticipated value.

We now describe the main process of IAPM, as show in the
right-hand side of FIG. 7. Having used the key K2 and the
nonce R to derive offsets Z[0], . .., Z|m+1], encipher R, now
using key K1, to determine an enciphered R-value, C[O]=E »,
(R). Now, for each 1€[1 . . . m], message block M[i] 1s xored
with ofiset Z[1], the result 1s enciphered using E (keyed by
K1), and the resulting block 1s xored once again with offset
Z[1], vielding a ciphertext block C[i]: that 1s, for each
i€[1 ...m], let C[i]=Z[1]DPEx,(M[1]DZ][1]). Call C=C[1] . ..
C[m] the ciphertext core. Next, compute a checksum, Check-
sum, by xoring together the message blocks: Checksum=
M[1]D ... DPM[m]. Next, form an authentication tag, Tag, by
xoring the checksum with offset Z|m+1], enciphering the
result with E.,, and xoring the resulting block with offset
Z[0]: Tag=Z|0])DE ., (Checksum®PZ[m+1]). The complete
ciphertext specifies C[0], ciphertext core C=C[1] . . . C[ml],
and authentication tag Tag.

Decryption proceeds by the natural algorithm, rejecting a
ciphertext 1f 1ts supplied authentication tag does not have the
anticipated value. Namely, set R=E.., " (C[0]) and use R and
K2 to compute the offset sequence Z[0], . . ., Z[m+1]. Then
compute the prospective plaintext M=M|[1] . . . M[m] by
setting M[1]=Z[i1]PE, " (C[i]BZ][i]). Next, re-compute the
tag Tag' that one would expect for the prospective plaintext
M': Checksum=M[1]&> . . . ©M[m] and Tag'=Z[0]DE,
(Checksum@®Z[m+1]). If the expected tag, Tag', matches the
tag Tag appearing within the ciphertext, then the plaintext M
1s defined as the prospective plamntext M'. Otherwise, the
received ciphertext 1s invalid.

It should be noted that IACBC 1s not parallelizable: one can
not compute Y[1] until Y[1-1] has already been computed,
making that method inherently sequential. But IAPM 1s tully
parallelizable: all ofthe block-cipher calls needed to compute
the ciphertext core can be computed at the same time.

We comment that the nonce R used in IACBC must be
random. Use of a counter, or another adversarially predictable
value, will result 1n an incorrect scheme.

It 1s 1mportant to optimize the speed of the make-offset
process because, 1f 1t 1s slow, then the entire encryption pro-
cess will be slow. Jutla’s “method 17 for making offsets 1s
depicted 1n FI1G. 8. It works as follows. Let t be the number of
bits needed to write m+2 1n binary; that 1s,

=1+| log;(m+2)|.
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Now for each 1€[1 . . . t], let
IV[i]=E t(R+i)

where the indicated addition operation means computer addi-
tion of n-bit strings (that 1s, regard 1 as an n-bit string and add
it to the n-bit string R, 1gnoring any carry that might be
generated). The value R should be a random value (a counter,
tor example, will not work correctly). Oflsets are now formed
by xoring together different combinations of IV]i]-values.
Jutla suggests the following to compute each Z[1] value, for
1€[0 . . . m+1]. Number bit positions left-to-right by 1, .. ., t
and let1,,...,1€[l...t] denote all of the bit positions where
1+1, when written as a t-bit binary number, has a 1-bit. Then
set

Zfi=IV[i D . .. BIV]i,]

As an example, 1f m=3 then =3 (since 5 1s 101 1n binary,
which takes 3 bits to write down), Z[O]=IV[3] (since 1 15 001
in binary), Z[1]=IV][2] (since 2 1s 010 1n binary), Z[2]=IV[2]
DIV[3] (since 3 is 011 1n binary), Z[3]=IV[1] (since 4 1s 100
in binary), and Z[4]=IV[1]@IV[3] (since 5 is 101 in binary).

We now describe Jutla’s “method 2 for making offsets.
Choose a large prime number p just less than 27 (e.g., choose
the largest prime less than 2”) and then, for1€[0 . . . m+1], set

Zfi=(IV[1]+-IV[2])mod p

where IV[1]=Ez,(R+1) and IV[2]=E-.(R+2) are defined as
before. Again, nonce R should be a random value. The mul-
tiplication operator **-” refers to ordinary multiplication in the
integers. Notice that for 1==1, the value of Z[1] can be com-
puted from Z[1-1] by addition of IV[2], modulo p. This sec-
ond method of Jutla’s requires fewer block-cipher calls than
the first method of Jutla’s (block-cipher calls are used to make
the IV]1] values, and now only two such values are needed,
regardless of the length of the message). On the other hand,
the mod p addition 1s likely more expensive than xor.

The property that Jutla demands of the sequence of ofisets
he calls pairwise independence, but Jutla does not use this
term 1n accordance with its customary meaning in probability
theory. Jutla appears to mean the property usually called
strongly universal-2. A family of random variables Z[0], Z[ 1],
Z|2], ..., eachwithrange D, 1s said to be strongly universal-2
if, for all 1=, the random variable (Z[1], Z[1]) 1s uniformly
distributed DxD.

Just subsequent to the appearance of Jutla’s paper, two
other authors, Virgil Gligor and Pompiliu Donescu, described
another authenticated-encryption scheme. Their paper, dated
Aug. 18, 2000 and entitled, http://www.eng.umd.edu/~gli-
gorFast Encryption and Authentication: XCBC encryption
and XECB Authentication Modes, first appeared on Gligor’s
worldwide web homepage. The Gligor-Donescu authenti-
cated-encryption scheme, which the authors call XCBC,
resembles Jutla’s IACBC. The scheme called XCBCS 1is
depicted 1n FIG. 9. The main difference between IACBC and
XCBCS i1s that the latter uses offsets Z[1], Z[2], . . . Z|m+1],
which are now defined by: Z[0]=0 and, for 1€[1 . . . m+1],
Z[1+1]=7]1-1]+R. The indicated addition means addition of
binary strings, modulo 2”. Besides this “method 3™ to create
offsets, one should note that the value of Z[1] 1s now added
(modulo 2") to the block-cipher output, rather than being
xored with the block-cipher output. Other differences
between the Jutla and Gligor-Donescu schemes will be appar-
ent to those skilled 1n the relevant art when comparing FIGS.

5 and 8.

As with Jutla’s schemes, the nonce R in XCBCS$ should be
a random value; use of a counter, or another adversarially-
predictable quantity, will not work correctly. The authors give

10

15

20

25

30

35

40

45

50

55

60

65

6

a closely related scheme, XCBC, which employs a counter
instead of a random value. That scheme 1s 1llustrated 1n FIG.
10. The complete ciphertext specifies the nonce, “ctr”, as well
as C[1] ... C|m]|[Tag.

[t should be noted that XCBC and XCBCS, like IACBC,
are sequential. Gligor’s paper, as it originally appeared, did
not suggest a parallelizable approach for authenticated
encryption.

All of the available authenticated-encryption schemes we
have described thus far share the following limitation: they
assume that all messages to be encrypted have a length that 1s
a positive multiple of the block length n. This restriction can
be removed by first padding the message, using padding
techniques well-known 1n the art. For example, one can
append to every message M a “1” bit and then append the
minimum number of 0-bits so that the padded message has a
length which 1s a multiple of n. We call this “obligatory
padding”. Decryption removes the obligatory padding to
recover the original message. However, removing the length
restriction in an authenticated-encryption scheme by obliga-
tory padding 1s undesirable because 1t increases the length of
the ciphertext (by an amount between 1 and n-1 bits). Fur-
thermore, the method results 1n an extra block-cipher invoca-
tion when the message M 1s of a length already a positive
multiple of n.

Another approach known 1n the art to deal with messages
whose length 1s not a positive multiple of n 1s “ciphertext
stealing CBC encryption”, which 1s like ordinary CBC
encryption except that the final message block M[m] may
have fewer than n bits and the final ciphertext block C[m] 1s
defined not by C[m]=E .(M[m]DC[m-1]) but by C[m]=E .
(CIm-1])PM[m]. One could hope to somehow use cipher-
text stealing in an authenticated-encryption scheme, but 1t 1s
not known how to do this 1n a way that does not destroy the
authenticity property required of an authenticated-encryption
scheme. In particular, natural attempts to try to modify IAPM
in a manner that employs ciphertext stealing result 1n tlawed
schemes. A possible approach 1s to adapt ideas from the paper
of Black and Rogaway, CBC MACs for Arbitrary-Length
Messages: The Three Key Constructions, appearing in
Advances in Cryptology—CRYPTO 00, Lecture Notes 1n
Computer Science, Springer-Verlag, 2000. This paper
teaches the use of obligatory padding for messages of length
zero or a non-multiple of n, combined with no padding for
messages of length of positive multiple of n, combined with
xoring 1nto the last block one of two different keys, as a way
to differentiate these two different cases. However, such a
method 1s tailored to the construction of message authentica-
tion codes, particularly message authentication codes based
on the CBC MAC. It 1s unknown 1f such methods can be

correctly adapted to an authenticated-encryption scheme like
IAPM.

An additional limitation of the authenticated-encryption
techniques we have discussed 1s the use of multiple keys.
While well-known key-separation techniques can create as
many “key variants” as one needs from a single underlying
key, depending on such methods results 1n additional time for
key-setup and additional space for key storage. It 1s unknown
how one could devise a correct algorithm that would use only
a single block-cipher key and use this one key to key all
block-cipher invocations.

Method 1 for computing oifsets 1s complex and slow, need-
ing an unbounded number of block-cipher calls. The values
IV[1], ..., IV]t] can be computed during a pre-processing
stage, but this pre-processing will be slow. Method 2 for
computing offsets requires modulo p addition, which 1s not
particularly fast because typical implementations use blocks
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having n=128 bits. Method 3 for computing offsets likewise
requires addition (now modulo 27) of quantities typically

having n=128 bits, which may again be inconvenient because
computers do not generally support such an operation, and
high-level programming languages do not give access to the
add-with-carry instruction that best helps to implement 1t.
Most of the methods we have described require the use of a
random nonce R, and the schemes will not work correctly
should R be predictable by an adversary.

SUMMARY

Variations of the present invention provide methods for
constructing more efficient authenticated-encryption
schemes. The new methods give rise to parallelizable authen-
ticated-encryption schemes that combine any or all of the
following features: (1) Messages of arbitrary bit length (not
necessarily amultiple of the block length n) can be encrypted.
(2) The resulting ciphertext will be as short as possible (in
particular, the ciphertext core will have the same length as the
message that 1s being encrypted, even when the message
length 1s not a multiple of the block length). (3) Offsets can be
computed by extremely fast and simple means, and without
the use of modular addition. (4) Pre-processing costs are very
low (e.g., one block-cipher call and some shifts and xors). (5)
The encryptionkey 1s a single block-cipher key, and all block-
cipher calls make use of only this one key. (6) The needed
nonce may be adversanally predictable (a counter 1s fine). (7)
Only as many oilsets are needed as the message 1s long (in
blocks). (8) A total of m+2, (or even m+1) block-cipher calls
are adequate to encrypt a message of m blocks.

To achieve these and other goals, new techniques have been
developed. A first set of techniques concern the “structure” of
an authenticated-encryption scheme, and describe improved
methods for how the message M 1s partitioned 1nto pieces and
how these pieces are then processed. A second set of tech-
niques concern improved ways to generate the needed offsets.
A third set of techniques deal with methods to avoid the use of
multiple block-cipher keys. A fourth set of techniques facili-
tate authenticated-encryption schemes which elliciently pro-
cess assoclated-data, where associated-data refers to infor-
mation which should be authenticated by the Recetver but
which 1s not a part of the message that 1s being encrypted. The
different types of improvements are largely orthogonal.

More specifically, one embodiment of the present mven-
tion provides an authenticated-encryption method that uses a
key, a nonce, and an n-bit block cipher to encrypt a message
of arbitrary bit length into a ciphertext core and a tag, the
ciphertext core having the same length as the message. The
system operates by first partitioming the message into a mes-
sage body having a multiple of n bits and a message fragment
having at most n bits. Next, the system generates a sequence
of offsets from the nonce and the key, and computes a cipher-
text body having the same length as the message body using,
the n-bit block cipher, the message body, the key, and the
sequence of offsets. The system then computes an n-bit pad
from the length of the message fragment, an ofiset from the
sequence of offsets, the n-bit block cipher, and the key, and
computes a ciphertext fragment having the same length as the
message fragment from the message fragment and the n-bit
pad. The system then defines the ciphertext core as the cipher-
text body concatenated with the ciphertext fragment, and
defines the tag as a function of the message body, the cipher-
text fragment, the n-bit pad, the offset from the sequence of
olffsets, and the key.

In a variation of this embodiment, the sequence of oifsets 1s
produced by computing an initial offset from the nonce, the
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key, and the n-bit block cipher, and each subsequent offset 1s
produced from the prior offset by a process involving at least
one shiit and one conditional xor operation.

A further embodiment of the present invention provides an
authenticated-encryption method that uses a single block
cipher key, a nonce, and an n-bit block cipher keyed by the
single block cipher key to encrypt a message into a ciphertext.
The system operates by utilizing a sequence of ofisets, com-
prising the steps of: computing an initial offset using the
nonce and the n-bit block cipher, computing each subsequent
olfset by applying at least one shift and at least one condi-
tional xor operation to the prior offset, and computing the
ciphertext by combining the sequence of offsets and the mes-
sage, using the n-bit block cipher.

A further embodiment of the present invention provides a
parallelizable authenticated-encryption method that uses a
key, a nonce, and an n-bit block cipher to encrypt a message
of arbitrary bit length into a ciphertext core and a tag, the
ciphertext core having the same length as the message and all
invocations of the n-bit block cipher keyed using the key. The
system operates by {irst partitioning the message mnto m-—1
message blocks of n bits and a message fragment of at mostn
bits. Next, the system generates from the nonce a sequence of
m+1 offsets, each of n bits, by first invoking the n-bit block
cipher and then applying a sequence of shift and conditional
xor operations. For each number 1 between 1 and m-1, the
system then computes an i” ciphertext block by xoring an i
message block with an i’ offset, applying the n-bit block
cipher, and xoring the result with the i” offset. The system
computes a pad by xoring an n-bit encoding of the length of
the message fragment with an m” offset and applying the
n-bit block cipher, an then computes a ciphertext fragment
having the same length as the message fragment by xoring the
message fragment and a portion of the pad. Next, the system
defines the ciphertext core as a concatenation of an m-1
ciphertext blocks and the ciphertext fragment. The system
computes an n-bit padded ciphertext fragment from the
ciphertext fragment, computes a checksum by xoring the m-1
message blocks, the pad, and the n-bit padded ciphertext
fragment, and computes the tag by xoring the checksum and
an (m+1)* offset and applying the n-bit block cipher.

A further embodiment of the present invention provides an
authenticated-encryption method that provides for associ-
ated-data, the method depending on a pseudorandom func-
tion and the authenticated-encryption method, wherein the
authenticated-encryption method does not provide for asso-
ciated-data, wherein encryption of amessage into a ciphertext
1s achieved by: encrypting the message with the authenti-
cated-encryption method that does not provide for an associ-
ated data to determine a ciphertext core and a tag, applying the
pseudorandom function to the associated-data to determine
an associated-data authenticator, and defining the ciphertext
to be the ciphertext core together with an xor of the tag and the
associated-data authenticator.

A further embodiment of the present invention provides an
authenticated-encryption method that provides for associ-
ated-data, the method utilizing a key, a nonce, an n-bit block
cipher, and a pseudorandom function to encrypt a message of
arbitrary bit length 1nto a ciphertext core and a tag, the cipher-
text core having the same length as the message. The system
operates by partitioning the message into a message body
having a multiple of n bits and a message fragment having at
most n bits and generating a sequence of oflfsets from the
nonce and the key. The system then computes a ciphertext
body having the same length as the message body using the
n-bit block cipher, the message body, the key, and the
sequence of offsets, computes an n-bit pad from the length of
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the message fragment, an oifset from the sequence of oifsets,
the n-bit block cipher, and the key, and computes a ciphertext
fragment having the same length as the message fragment
from the message fragment and the n-bit pad. Next, the sys-
tem defines the ciphertext core as the ciphertext body concat-
cnated with the ciphertext fragment. The system then com-
putes a checksum from the message body, the ciphertext
fragment, and the n-bit pad, computes a full tag using the
checksum, the offset from the sequence of offsets, the n-bit
block cipher, and the key, and computes an associated-data
authenticator by applying the pseudorandom function, keyed
by the key, to the associated-data. Finally, the system defines
the tag as an xor of the full tag and the associated-data authen-
ticator.

In a variation of this embodiment, the sequence of offsets 1s
produced by computing an initial offset from the nonce, the
key, and the n-bit block cipher, and each subsequent offset 1s
produced from a prior offset by a process mvolving at least
one shiit and at least one conditional xor operation.

A further embodiment of the present invention provides an
authenticated-encryption method that uses a key, a nonce, and
an n-bit tweakable block cipher to encrypt a message of
arbitrary bit length into a ciphertext core of the same length
and a tag, all invocations of the n-bit tweakable block cipher
keyed by the key. The system operates by first partitioning the
message into m—1 message blocks of n bits and a message
fragment of at most n bits. For each number 1 between 1 and
m-1, the system computes an i” ciphertext block by applying
the n-bit tweakable block cipher to an i”” message block, using
a first tweak consisting of the nonce, the number 1, and a
constant 0. The system then computes a pad by applying the
n-bit tweakable block cipher to a string that encodes a length
of the message fragment, using a second tweak consisting of
the nonce, a number m, and a constant 1, and computes a
ciphertext fragment by xoring the message fragment and a
portion of the pad that has a same number of bits as the
message fragment. Next, the system defines the ciphertext
core as a concatenation of the m-1 ciphertext blocks and the
ciphertext fragment. The system then computes an n-bit pad-
ded ciphertext fragment from the ciphertext fragment, com-
putes a checksum by xoring the m-1 message blocks, the pad,
and the n-bit padded ciphertext fragment, and computes the
tag by applying the n-bit tweakable block cipher to the check-
sum, using a tweak consisting of the nonce, the number m,
and a constant 2.

In a variation of this embodiment, the n-bit tweakable
block cipher 1s implemented using an n-bit conventional
block cipher, each invocation of the n-bit tweakable block
cipher utilizing at least one shift operation, at least one con-
ditional xor operation, and at least one call to the n-bit con-
ventional block cipher.

A further embodiment of the present invention provides a
parallelizable authenticated-encryption method that provides
for associated-data and uses a key, a nonce, and an n-bit
tweakable block cipher to encrypt a message of arbitrary bit
length 1nto a ciphertext core of the same length and a tag, all
invocations of the n-bit tweakable block cipher keyed by the
key. The system operates by first partitioning the message into
m-1 message blocks of n bits and a message fragment of at
most n bits. For each numberi1 between 1 and m-1, the system
then computes an i” ciphertext block by applying the n-bit
tweakable block cipher to an i’ message block, using a first
tweak consisting of the nonce, the number 1, and a constant O.
Next, the system computes a pad by applying the n-bit tweak-
able block cipher to a string that encodes a length of the
message fragment, using a second tweak consisting of the
nonce, the number m, and a constant 1, and computes a
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ciphertext fragment by xoring the message fragment and a
portion of the pad that has a same number of bits as the
message fragment. The system then defines the ciphertext
core as a concatenation of the m ciphertext blocks and the
ciphertext fragment. Next, the system computes an n-bit pad-
ded ciphertext fragment from the ciphertext fragment, com-
putes a checksum by xoring the m-1 message blocks, the pad,
and the n-bit padded ciphertext fragment, computes a full tag
by applying the n-bit tweakable block cipher to the checksum,
using a third tweak consisting of the nonce, the number m,
and a constant 2, and computes an associated-data authent-
cator by applying a pseudorandom function to the associated-
data. Finally, the system defines the tag as a portion of the
string that 1s an xor of the full tag and the associated-data
authenticator.

In a variation of this embodiment, the n-bit tweakable
block cipher 1s implemented using an n-bit conventional
block cipher, each invocation of the n-bit tweakable block
cipher utilizing at least one shift operation, at least one con-
ditional xor operation, and at least one call to the n-bit con-
ventional block cipher.

BRIEF DESCRIPTION OF THE FIGURES

FIG. 1 describes encryption under “OCB”, where OCB 1s
the name for one embodiment of many of the techniques
taught 1n the present invention.

FIG. 2 1s a high-level description of the make-offset pro-
cess o1 OCB 1n accordance with an embodiment of the present
invention.

FIG. 3 1s a low-level description of the make-oifset process
of OCB 1n accordance with an embodiment of the present
ivention.

FIG. 4 describes decryption under OCB in accordance with
an embodiment of the present invention.

FIG. 5 describes a variant of OCB 1n accordance with an

embodiment of the present invention.
FIG. 6 depicts the IACBC scheme of Jutla.

FIG. 7 depicts the IAPM scheme of Jutla.

FIG. 8 depicts one of Jutla’s methods for constructing
olfsets.

FIG. 9 depicts the XCBCS$ scheme of Gligor and Donescu.

FIG. 10 depicts the XCBC scheme of Gligor and Donescu.

FIG. 11 depicts encryption under OCB-from-a-tweakable-
block-cipher, a generalization of OCB recast to use a different
kind of primitive 1n accordance with an embodiment of the
present invention.

FIG. 12 depicts encryption under OCB 2.0, a second
embodiment of the 1deas of this invention 1n accordance with
an embodiment of the present invention.

DETAILED DESCRIPTION

The following description 1s presented to enable any per-
son skilled in the art to make and use the invention, and 1s
provided 1n the context of a particular application and 1its
requirements. Various modifications to the disclosed embodi-
ments will be readily apparent to those skilled 1n the art, and
the general principles defined herein may be applied to other
embodiments and applications without departing from the
spirit and scope of the present invention. Thus, the present
invention 1s not intended to be limited to the embodiments
shown, but 1s to be accorded the widest scope consistent with
the principles and features disclosed herein.

The data structures and code described 1n this detailed
description are typically stored on a computer-readable stor-
age medium, which may be any device or medium that can
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store code and/or data for use by a computer system. This
includes, but 1s not limited to, magnetic and optical storage
devices such as disk drives, magnetic tape, CDs (compact
discs) and DVDs (digital versatile discs or digital video
discs), and computer istruction signals embodied 1n a trans-
mission medium (with or without a carrier wave upon which
the signals are modulated). For example, the transmission
medium may 1include a communications network, such as the
Internet.

We now describe an embodiment of the present invention
known as OCB (for offset codebook) mode. OCB 1s an
authenticated-encryption scheme that uses an n-bit block
cipher E, a key K, and a nonce Nonce to encrypt an arbitrary
message M. To specity OCB we begin by giving some nota-
tion and reviewing some mathematical background.
Notation and Mathematical Background

If a and b are itegers, a=b, then [a . . . b] 1s the set of all
integers between and including a and b. IT 1221 1s an integer
then ntz(1) 1s the number of trailing 0-bits 1n the binary rep-
resentation of 1 (equivalently, ntz(1) 1s the largest integer z
such that 2° divides 1). So, for example, ntz(7)=0 and
ntz(8)=3.

A string 1s a finite sequence of symbols, each symbol being
0 or 1. The string of length O 1s called the empty string and 1s
denoted €. Let {0,1}* denote the set of all strings. If A,
Be{0,1}* then A B, or A|[B, is their concatenation. If Ae{0,
1 }* and A=e€ then firstbit(A) is the first bit of A and lastbit(A)
1s the last bit of A. Let 1 and n be nonnegative integers. Then
0’ and 1° denote strings of 1 0’s and 1’s, respectively. For n
understood, 0 means 0”. Let {0,1}” denote the set of all strings
of length n. If Ae{0,1}* then |Al is the length of A, 1n bits,
while |Al =max(1,[|Al/n]| is the length of A in n-bit blocks,
where the empty string counts as one block. For Ae{0,1}* and
|AI=n, zpad, (A)is A||0”"“'. With n understood we write AQ*
for zpad (A). If Ae{0,1}* and te[0 . . . A] then A [first t bits]
and A [last t bits] are the first t bits of A and the last t bits of A,
respectively. Both of these values are the empty string 11 t=0.
If A, Be{0,1}* then ADB is the bitwise xor of A[first s bits]
and Blfirst s bits] where s=min{|Al,|Bl}; for example,
10019110=010.

IfA=a, ,...a, a,e{0,1}" is a string, each a,€{0,1}, then
str2num(A) is the number 2, 2’a. that this string repre-
sents, in binary. Ifa€[0 . .. 2""'] is a number, then num2str, (a)
1s the n-bit string A such that str2Znum(A)=a. Let len (A)=
num?2str, (IAl) be the string that encodes the length of A as an
n-bit string. We omit the subscript n when 1t 1s understood.

IfA=a_.a ....a,a,€{0,1}"then A<<l=a __...a, a,0is
the n-bit string which 1s a left shiit of A by 1 bt (the first bit
of A disappearing and a zero coming 1nto the last bit), while
A>>1=0a,_,a, ,...a,1sthen-bit string which 1s a right shift
of A by one bit (the last bit disappearing and a zero coming
into the first bit).

In pseudocode we write “Partition M into M[1] ... M[m]”
as shorthand for “Let m=IMI _ and let M[1], . .., M|m] be
strings such that M[1] ... M[m]=M and IM]1]|=n for 1 =1<m.”
We write “Partition C into C[1] ... C|m] 1" as shorthand for
“1if |CI<t then return mvalid. Otherwise, let C=C[firstIC|-t
bits], let T=C[last t bits], let m=|C|_,and let C[1]...C|m] be
strings such that C[1] ... C[m]=C and IC[1]|=n for 1=1<m.”
Recall that IM| =max {1, [IMI|/n]}, so the empty string par-
titions into m=1 blocks, that one block being the empty string.

By way of mathematical background, recall that a finite
field 1s a finite set together with an addition operation and a
multiplication operation, each defined to take a pair of points
in the field to another point 1n the field. The operations must
obey certain basic axioms defined by the art. (For example,
there must be a point O 1n the field such that a+0=0+a=a for
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every a; there must be a point 1 in the field such thata-1=1-a=a
for every a; and for every a=0 there must be a point a™' in the
field such that a-a~'=a~"-a=1.) For each number n there is a
umque finite field (up to the naming of the points) that has 2"
elements. It 1s called the Galois field of size 2”7, and it 1s
denoted GF(2").

We interchangeably think of a point aeGF(2”) 1n any of the
following ways: (1) as an abstract point 1n a field; (2) as an
n-bit string a, , ...a, a,e{0,1}”; (3) as a formal polynomial
a(x)=a, , X'+ ... +a, x+a, with binary coefficients; (4) as a
nonnegative integer between 0 and 2, where the string
ae{0,1}V” corresponds to the number str2num(a). For
example, one can regard the string a=0">"101 as a 128-bit
string, as the number 5, as the polynomial x*+1, or as a
particular point in the finite field GF(2'*®). We write a(x)
instead of a 1if we wish to emphasize the view of a as a
polynomial 1n the formal variable x.

To add two points 1n GF(2"), take their bitwise xor. We
denote this operation by abb.

Betfore we can say how to multiply two points we must {1x
some 1rreducible polynomial poly, (x) having binary coetii-
cients and degree n. For OCB, choose the lexicographically
first polynomial among the irreducible degree-n polynomials
having a mimmum number of coelficients. For n=128, the
indicated polynomial is poly, . (X)=x"**+x/+x°+x+1.

To multiply points a, b eGF(2”), which we denote a‘b,
regard a and b as polynomials a(x) and b(x), form their prod-
uct polynomial ¢(x) (where one adds and multiplies coeti-
cients 1n GF(2)), and take the remainder one gets when divid-
ing c(x) by the polynomial poly (X). By convention, the
multiplication operator has higher precedence than addition
operator and so, for example, v, -LOR means (v, -L)DR.

It is particularly easy to multiply a point ae{0,1}” by x. We
illustrate the method for n=128, where poly, (x)=x'**+x’+
x*+x+1. Then multiplying a=a, , ... a, a, by x yields the
polynomial a,_,x"+a,_, X' '+a,x +a,x. Thus, if the first bit of
a 1s 0, then a-x=a<<1. If the first bit of a 1s 1 then we must add
x'*® to a<<l. Since x'**+x’+x"+x+1=0 we know that
X “*=x’4+x°+x+1, so adding x'°® means to Xor by
0'°10000111. In summary, when n=128,

a<<<(] 1f firstbit(a)=0, and

a-X=

(a<<1)P0"'*°10000111 if firstbit(a)=1

If ae{0,1}” then we can divide a by X, meaning that one
multiplies a by the multiplicative 1mverse of x 1 the field:
a-x . It is easy to compute a-x'. To illustrate, again assume
that n=128. Then if the last bitof ais 0, then a-x™* is a>>1. If
the last bit of a 1s 1, then we must add (xor) to a>>1 the value
x~'. Since x"**=x’+x*+x+1 we have x'*’=x°+x+1+x and so
x '=x1*74x+x+1=10"*°1000011. In summary, for n=128,

a>>1 11 lastbit(a)=0, and

a-x =

(a>>1)P10°"1000011 if lastbit(a)=1

If Le{0,1}” and i=-1, we write L(i) for L-x". There is an
casy way to compute L(-1), L(0), L(1), ..., L(u), for a small
number u. Namely, set L{(0)=L; compute L(1)=L(1-1)-X from
L.(1-1), for all 1€[1 . . . u] using a shift and a conditional xor
(with the formula we have given); and compute L(-1) from L
by a shift and a conditional xor (with the formula we have
grven).

Still by way of background, a Gray code 1s an ordering of
the points of {0,1}* (for some number s) such that successive
points differ (in the Hamming sense) by just one bit. Forn a
fixed number, like =128, OCB uses the canonical Gray code
Gray(n)y =V, Yy, - - - Y-, 1). Gray(n) 1s defined as follows:
Gray(1)=(0, 1) and Gray(s) 1s constructed from Gray(s—1) by
first listing the strings of Gray(s—1) 1in order, each preceded by
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a 0-bit, and then listing the strings of Gray(s—1) 1n reverse
order, each preceded by a 1 bit. It 1s easy to see that Gray(n)
1s a Gray code. What 1s more, v, can be obtained from v,_, by
xoring y,_, with 0" 1<<ntz(i). This makes successive strings
easy to compute.

As an example, Gray(128)=(0,1,3,2,6,7,5,4,...).Tosee
this, start with (0, 1). Then write it once forward and once
backwards, (0,1,1,0). Then write (00, 01, 11, 10). Then write
it once forward and once backwards, (00,01,11,10, 10,11,01,
00). Then write (000,001,011,010, 110, 111, 101, 100). At
this point we already know the first 8 strings of Gray(128),
which are (0, 1, 3, 2, 6, 7, 5, 4), where these numbers are
understood to represent 128-bit strings. So, for example, v 1s
7andy.1s 5, and y,=5 really 1s v, =7 xored with 2, where 2 1s
the string 1 shifted left ntz(6)=1 positions.

Let Le{0,1}” and consider the problem of successively
torming the strings v,‘L, v,'L, vy, . . .y L. Of course
v-L=1-L=L. Now, for 1=2, assume one has already computed
v._.'L. Since y,=y,_,D(0" ' 1<<ntz(i)) we know that

vi-L=(yi_1 ® (0" < niz(i)-L

=vi_ - L@® O < nig(i)- L
= Vit - L@ (L-x")

= vi—1 - L@ Lntz(i))

That is, the i” string in the sequence is obtained by xoring the
previous string 1n the sequence with L(ntz(1)).

Had the sequence we were considering been additively
offset by some value R, that is, Ry L, RDy,L,...,RDy, L,
the i” string in the sequence would be formed in the same
way, for 1=2, but the first string in the sequence would be
LPR instead of L.

Definition of OCB

With the necessary notation and background now 1n place,
we are ready to describe OCB. OCB depends on two param-
eters: a block cipher E, having block length n, and a tag length
t, where t 1s a number between 1 and n. By trivial means, the
adversary will be able to forge a valid ciphertext with prob-
ability 277,

A popular block cipher to use with OCB 1s likely to be the
AES algorithm (AES-128, AES-192, or AES-256). As for the
tag length, a suggested default of t=64 1s reasonable, but tags
of any length are fine.

Encryption under OCB mode requires an n-bit nonce,
Nonce. The nonce would typically be a counter (maintained
by the sender) or a random value (selected by the sender).
Security 1s maintained even 1 the adversary can control the
nonce, subject to the constraint that no nonce may be repeated
within the current session (that 1s, during the period of use of
the current encryption key). The nonce need not be random,
unpredictable, or secret.

The nonce Nonce 1s needed both to encrypt and to decrypt.
To permit maximum flexibility, 1t 1s not specified by OCB
how the nonce 1s communicated to the Receiver, and we do
not regard the nonce as part of the ciphertext. Most often the
nonce would be communicated, in the clear, along with the
ciphertext: for example, the nonce, 1n 1t entirety, might be
prepended to the ciphertext. Alternatively, the Sender may
encode the nonce using some agreed upon number of bits less

than n, and this encoded nonce would be sent to the Receiver
along with the ciphertext.
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TABLE 1
OCB-Encrypt, (Nonce,M)
Partition M into M[1] *** M[m] //Define needed values
L =E_O) //Key variant. Recall 0=0"
R =E, (Nonce & L) // Base offset R

fori=1tom

doZ[i]=vy,* LD R
Z[-m]=Z[m]DLe*x!
for 1=1 to m-1 do

Cli] =E.(M[i] D Z[1]) D Z][1]

PrePad = len(M[m]) & Z[-m]
Pad =E_(PrePad)
C[m] = Pad €& M[m] // Uses Pad bits 1. . IM[m]
C=C[l]***C[m] /f Ciphertext core
Checksum = M[1] D e ** D M[m-1] D C[m] 0* D Pad
PreFullTag = Checksum & Z[m]
FullTag = E (PreFullTag)
Tag = FullTag [first t bits]
return C || Tag

// Offsets: Z[1],. .., Z]m]

// Process message blocks. . .

// Process final fragment. . .

// The final ciphertext, C

See FIG. 1 for an illustration of OCB encryption. FIG. 1 1s
best understood 1n conjunction with the algorithm definition
in Table 1, which explains all of the figure’s various parts and
gives additional algorithmic details. The key space for OCB 1s
the key space for the underlying block cipher E. OCB encryp-
tion 1s then defined 1n Table 1.

Referring to FIG. 1 and the algorithm definition above, one
sees that the message M has been partitioned 1nto n-bit blocks
M[1], ..., M[m-1], as well as a message fragment, M[m],
which may have fewer than n bits. The message blocks and
the final fragment are treated differently.

Each message block MJ1] 1s xored with an offset (the Z[1]
value), enciphered, and then xored again with the same oifset.
This gives a ciphertext block C[1].

The message fragment M[m] 1s mapped 1nto a ciphertext
fragment C[m] by xoring 1t with the string Pad. According to
our conventions, only the first IM[m]| bits of Pad are used. In
this way, C[m], will have the same length as M[m]. The value
Pad does not depend on M|m], apart from 1its length. In
particular, Pad 1s formed by enciphering the string PrePad
which 1s the xor of the length of the final fragment M[m)],
encoded as a string, and the “special” offset Z]—-m], which 1s

the xor of Z[m] and L-x~'. Thus PrePad (and therefore Pad)
depends on the bit length of M.
At this point, the ciphertext core C=CJ1] . .. C[m] has been

computed. Its length 1s the length of M.

A checksum 1s now computed by xoring together: (a) the
m—1 message blocks; (b) the zero-padded ciphertext frag-
ment, C[m]0*; and (c¢) the value Pad. (This 1s equivalent to
xoring together: (a) the message blocks; (b') the zero-padded
message fragment, M[m]0*; (¢') the string S which 1s the first
n—|M|m]| bits of Pad followed by IM[m]| zero-bits.) The
checksum 1s offset using offset Z[m], giving the PreFull Tag.
That string 1s enciphered to give the FullTag. The t-bit prefix
of the FullTag 1s used as the actual tag, Tag.

The ciphertext C 1s the ciphertext core C=CJ[1] . . . C[m]
together with the tag Tag. The Nonce must be communicated
along with the ciphertext C to allow the Receiver to decrypt.

FIGS. 2 and 3 clarily the make-ofiset process that1s used in
OCB but which s only partially depicted in F1G. 1. First, FIG.
2 depicts how the underlying key K 1s mapped, conceptually,
into a sequence of fixed ofisets z[1], z[2], z[3], . . . . We call
this sequence of offsets “lixed” because 1t does not depend on
the nonce Nonce (1t only depends on the key K). The sequence
of fixed offsets 1s mapped 1nto a sequence of translated ofl-
sets, or simply offsets, by xoring each fixed ofiset with a base
offset, R: that 1s, Z[1]=Z[1]<DR. The base offset R is deter-

mined from the nonce Nonce and from the underlying key K.
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FIG. 3 shows the mventive process in more detail. The
sequence of fixed offsets that we choose 1s z[1]=y-L, z[2]=
v.-L, Z[3]=v5'L, and so on. Thus the sequence of translated
offsets used by OCB 1s Z[1]=y- LR, Z[2]=y,-LDR, Z[3]=
v, LR, and so on. These offsets can be calculated in a
particularly simple manner. Namely, 1n a pre-processing step
we map L, which 1s a key variant determined by enciphering,
under K the constant string 0, into a sequence of basis oflsets
L(0),L(1),L(2),....Basis offset L(i) is defined to be L-x’. We
have already explained how to easily compute these strlngs

Now we compute translated offsets as follows. The first ofl-
set, Z[1], 1s defined as RDL(0). Offset Z[2] is computed from

offset Z[1] by xoring Z[1] with L(1). One chooses L(1)
because we are making offset number 2 and the number 2,
written 1n binary, ends 1n 1 zero-bit. Offset Z[3] 1s computed
from offset Z[2] by xoring Z[2] with L(0). One chooses L(0)
because we are making offset 3 and 3, written 1n binary, ends
in 0 zero-bits. Offset Z[4] 1s computed from ofiset Z[3] by
xoring mnto Z[3] with L(2). One chooses L.(2) because we are
making ofl

set 4 and 4, written 1n binary, ends 1n 2 zero-bits.
One continues 1n this way, constructing each (translated)
offset from the prior offset by xoring in the appropnate L(1)
value.

Decryption in OCB works 1n the expected way. The algo-
rithm 1s shown 1n FI1G. 4 and 1s defined as follows. All parts of
FIG. 4 can be understood by consulting the algorithm defini-
tion that appears 1n Table 2.

TABL.

OCB-Decrypt, (Nonce, C)
Partition C into C[1] *** C[m] Tag
L = L (0)

R =E, (Nonce L)

T
)

fori=1ltomdoZ[i]=y,*LDR
Z[-m]=Z[m] S L eex’
fori=1tom-1do

M[i] = E,. ! (C[i] & Z[i]) ©D Z][i]

PrePad = len(C[m]) & Z[-m]

Pad = I (PrePad)
M[m] =Pad & C[m]
M =M][1] *** M[m]

Checksum =M[1] D e** D M[m-1] @ C[m]0* D Pad
Tag' = E, (Checksum @ Z [m]) [first t bits]
1f Tag = Tag' then return M

else return invalid

An Alternative Description

At this point, we have fully described the embodiment
OCB. Still, the following alternative description may help to
clarify what a typical implementation might choose to do.

Key generation: Choose a random key K from the key

space for the block cipher. The key K 1s provided to both the
entity that encrypts and the entity that decrypts.

Key setup: With the key now distributed, the following can

be pre-computed:

1. Setup the block-cipher key. For the party that encrypts:
do any key setup associated to enciphering using the
block-cipher with key K. For the party that decrypts: do
any key setup associated to enciphering or deciphering
using the block-cipher with key K.

2. Pre-compute L. Let L=E . (0).

3. Pre-compute L(1)-values. Letm,_ __be at least as large as
the number of n-bit blocks 1 any message to be
encrypted or decrypted. Letu=| log, m,___|. Let L(0O)=L
and, for 1€[1 . . . u], compute L(1)=L(1-1)-x using a shiit
and a conditional xor, 1n the manner already described.
Compute L(-1)=L-x~" using a shift and a conditional
xor, 1 the manner already described. Save L(-1),
L(0), ..., L(u)1n a table.
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Encryption: To encrypt message Me{0,1}* using key K
nonce Nonce €{0,1}”, obtaining ciphertext C, do the follow-
ng:

1. Partition M. Let m=| IM|/n]. If m=0 then replace m by 1.
Let M[1], . . ., M[m] be strings such that M[1] . . .
M[m]=M and IM]i]|=n for all 1€[1 . . . m-1].

2. Initialize variables. Let Offset=E.(Nonce®PL). Let
Checksum=0.

3. Encipher all blocks but the last one. For 1=1 to m-1, do

the following:
Let Checksum=Checksum®M]i].

Let Offset=OffsetPL(ntz(1)).
Let C[1]=E x(M[1]DO1tset )} POfTset.
4. Mask the final fragment and {finish constructing the

checksum:

Let Offset=0OffsetPL(ntz(m)).

Let Pad=FE .(Ien(M[m])®L(-1)DOATset).

Let C[m]=M|m]®D(the first IM[m]| bits of Pad).

Let Checksum=ChecksumPPadPC[m]0*.

5. Form the tag. Let Tag be the first t bits of
E (Checksum®Offset).

6. Return the c1phertext The ciphertext 1s defined as the
string C=C [1] . . . C[m~1]C[m]|[Tag. It is communicated
along with the nonce Nonce to the Receiver.

Decryption: To decrypt a ciphertext Ce{0,1}* using key K

and nonce Noncee{0,1}”, obtaining a plaintext Me{0,1}* or
¢lse an 1indication invalid, do the following:

1. Partition the ciphertext. If |CI<t then return invalid (the
ciphertext has been rejected). Otherwise, let C be the
first |C|-t bits of C and let Tag be the remaining t bits. Let
m=[|Cln]. If m=0 then let m=1. Let C[1], . .., C[m] be
strings such that C[1] . . . C[m]=C and IC[i]Izn for
1€/l ...m-1].

2. Initialize variables. Let Offset=E.(Nonce ©DL). Let
Checksum=0.

3. Recover all blocks but the last one. Fori=1to m-1, do the

following:

Let Offset= Offsd@L(ntz(i)).

Let M[i]=E .~ (C[1]©DOffset)DOffset.

Let Checksum Checksum®DM]1].

4. Recover the final fragment and finish making the check-
sum:

Let Offset=OffsetPL(ntz(m)).

Let Pad=E K(len(C[m] YPL(-1)DOATset.

Let M[m]=C[m]|D(the first IC[m]l bits of Pad).

Let Checksum=Checksum@PadPDC[m]0*.

5. Check the tag. Let Tag' be the first t bits of

E (Checksum@Offset). If Tag=Tag' then return invalid

(the ciphertext has been rejected). Otherwise,
6. Return the plaintext. The plaintext that 1s returned 1s
defined to be M=M][1] ... M|m-1] M|m].

Variations

While many variants of OCB result in incorrect algorithms,
there are also many correct variants. One type ol variant
leaves the structure of OCB alone, but changes the way offsets
are produced. When changing the way that offsets are pro-
duced, one may also have to change the semantics of the xor
operation. We give a couple of examples.

For an “addition mod 2" variant” of OCB, one might

change the offsets to Z[1] (R+1L)mod 2", for1= 1 and Z[-m]

=complement(Z[m]) (the bit-wise complement of Z|m]).
According to this definition, each offset 1s computed from the
prior one by n-bit addition of L. Altematively, replace
complement(Z[m])) by —-Z[m] mod 2", where 1s nearly the
same thing (the two differ by a constant, 1, and this difference
1s 1rrelevant).
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Assuming n 1s a multiple of the word size of a computer,
addition mod 2” 1s easily computed by a computer. We call
addition mod 2" “computer addition”. Computer addition
might or might not generate a carry. To achieve addition
modulo 2" any carry that 1s generated 1s simply 1gnored.

Alternatively, for1==1, one could define Z[1]=1R mod 2%, so
that each offset 1s obtained from the prior one by n-bit addi-
tion of R 1nstead of L.

When defining offsets using computer addition, the xor
operations used to combine a message block and an offset,
and the xor operations used to combine a block-cipher output
and an offset, should be replaced by mod 2” addition. Leaving
these operations as xors seems to damage the schemes’ secu-
rity.

For a “mod p vanant” of OCB, where p 1s a large prime
number (for example, the smallest prime number less than
2™, change the offsets to Z[1]=(R+1L)mod p, for 1=1, and
Z|-m]=complement(Z[m]). According to this definition,
cach ofiset 1s computed from the prior one by n-bit addition of
L. The complement(Z[m]) can be replaced by —Z[m] mod p,
which 1s nearly the same thing (the two differ by a constant, 1,
and this difference 1s irrelevant).

Alternatively, for1==1, one could define Z[1]=1R mod p, so
that each offset 1s obtained from the prior one by n-bit addi-
tion of R instead of L.

When defining offsets using addition modulo p, the xor
operations used to combine a message block and an offset,
and then used to combine a block-cipher output and an offset,
could be replaced by mod p addition. However, this does not
seem to be essential.

An elliciency improvement can be made to the mod p
schemes for offset production: define Z[1] not as (Z[1-1]+L)
mod p, where an implementation would always have to check
if the sum 1s p or larger, but by doing the (mod p)-reduction in
a “lazy” manner, according to the carry bit produced by
computer addition. Namely, form Z[1] by computer addition
of n-bit numbers L and Z[1-1]. If the addition generates a
carry bit, then add into the sum the number 6=2"-p. This
method results 1 Z[1] being equal to one of two possible
values: (1IL+R)mod p, or p+((1L+R)mod p). The latter 1s only
a possibility in (rare) case that the indicated sum 1s less than
2"”. Thus the sequence of offsets 1s not little changed, yet an
implementation 1s more etficient since 1t only has to make an
adjustment to the computer-addition sum when a carry 1s
generated. The carry will typically be computed “for free” 1n
a modern processor. We call this method of offset production
lazy mod p addition.

Lazy mod p addition also works as a modification to the
Z[1][=1R mod p method; namely, define Z[1]=R and Z[1]=(Z
[1-1]+R)mod 2" 11 the indicated computer addition does not
generate a carry, and define Z[1]=(Z[1-1]+R+0) mod 2" if the
first addition does generate a carry.

Other variants of OCB change minor details in the structure
of the algorithm. For example, the value L-x~! used in form-
ing the PrePad can be replaced by the value L>>1. These two
possibilities are nearly the same thing: recall that L-x™" is
actually equal to L>>1 ifL ends mmn a 0 bit, and, 1f L ends 1n a
1 bit, L-x~" differs from L>>1 by a fixed constant. Thus there
is no practical difference between L-x~" and L>>1. This is
exactly analogous to the use of —A mod p verses complement
(A) 1n an addition mod p based scheme; or —A mod 2” verses
complement(A) in an addition mod 2" based scheme.

More structural changes can be made to OCB while pre-
serving 1ts basic ideas. The intuition for the manner in which
OCB processes the final fragment and then produces the tag 1s
to ensure that the PreFullTag appreciably depends not only on
the message blocks, but also on (a) the message fragment/
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ciphertext fragment, and (b) the length of the message. As an
example alternative, one might change the Z[-m] offset to
Z|m], and change the Z[m] offset to Z[-ml].

It 1s even possible to allow PreFulllag to imadequately
depend on the message fragment/ciphertext fragment, as long
as this dependency is realized in the FullTag itself. An
example of such an OCB variant 1s shown 1n FIG. 3. In that
variant, Pad does not depend on the bit length of M[m], but
only on the block length of M. The checksum 1s defined
differently from before; 1t 1s now defined by Checksum=M
[1]D . . . DM[m-1]DPpad(M|m]), where pad(A)=A if A isn
bits long and pad(A)=Al10""'4""! otherwise. With such a
scheme, PreFullTag would seem to madequately depend on
the message; for example, 17 and 17 give rise to identical
checksums, as well as ciphertext cores that differ by just one
bit. So 1f the authentication tag were taken to be FullTag™*, the
scheme would be msecure. To differentiate pairs of strings
like 1”7 and 1', the scheme of FIG. 5 modifies the value
FullTag*=E .(PreFullTag) by xoring it with one of two dii-
ferent offsets, O or Z|m+1]. The first offset 1s used if the
message fragment 1s n bits long (so no padding was appended
to the message fragment when forming the checksum), while
the second offset 1s used when the message fragment has
tewer than n bits (so 10* padding was appended to 1t when
forming the checksum). Now strings such as 1” and 1" will
give rise to the same FullTag™ but different FullTag values.

Many other correct variants of OCB are possible, as a
person skilled 1n the art will now be able to discern.

A variant 1n a different direction 1s to facilitate the efficient
processing ol associated-data. Associated-data refers to
information which the Receiver would like to ensure that he
shares (in 1dentical form) with the Sender, but where this
information 1s not a part of the message that 1s being
encrypted. Such information 1s usually non-secret, and 1t 1s
usually held static during the course of a session (that 1s, all
messages encrypted using a given key will usually share the
same associated-data). The associated-data 1s a vector of
strings AD), or 1t 1s a single string AD that encodes such a
vector of strings.

An authenticated-encryption scheme that permits associ-
ated-data can be regarded as an authenticated-encryption
scheme 1n which there 1s an extra argument, AD, supplied to
both the encryption function E and the decryption function D.
The Sender encrypts using E.{Nonce, AD, M) while the
Receiver decrypts using D, (Nonce, AD, C). If the Recerver
supplies an AD-value which 1s different from the one which
the Sender used, the ciphertext C, on decryption, will almost

certainly be regarded as invalid.

A method to allow for associated-data that will be obvious
to those skilled 1n the art 1s to have the Sender encode AD
along with the message M, obtaining an augmented message
M', and then have the Sender encrypt M', with authenticity,
using an authenticated-encryption scheme. But this method 1s
inefficient, mnsofar as the ciphertext C' that one obtains 1s
longer than a ciphertext C would be for M. The 1ncrease 1n
length 1s by an amount proportional to the length of AD. Also,
extra processing time 1s needed to encrypt and to decrypt
(even when AD 1s held constant across many messages).

The mventive methods permit more efficient processing of
associated-data than what 1s described above. We illustrate
the method for encryption under OCB,- (Nonce, AD, M). Let
F be a function of the key K and the associated-data AD. The
inventive method begins by computing A=F,(AD). In a first
technique, ciphertext OCB (Nonce, AD, M) 1s then defined
as OCB ,(Nonce, M). In an alternative technique, the cipher-
text OCB(Nonce, AD, M) is defined as OCB (NonceDA,
M). In yet another alternative, ciphertext OCB (Nonce, AD,
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M) is defined as (C, TagDA), where (C,T)=OCB (Nonce,
M). Decryption proceeds according to the obvious associated
algorithm, as those skilled 1n the relevant art will infer. Other
ways to modily the process of computing ciphertexts under
OCB {(Nonce, M) which make use of A will be apparent to
those skilled 1n the relevant art.

The mventive method has the advantage that the ciphertext
1s not lengthened because of the presence of the associated-
data, and the processing time 1s not significantly increased,
assuming that A has been pre-computed.

The description of the inventive method uses one key K for
both F.{(-) and OCB.(-, -). This 1s advantageous, but two
separate keys may of course be used mstead.

There are many options for realizing the function F used
above. For example, F may be the CBC MAC described
carlier. Alternatively, F may be obtained from a cryptographic
hash function, or from a universal hash function.

There are also many options for realizing the encoding of a
vector of strings AD 1nto a string AD. For example, one can
concatenate an encoding of each string 1n the vector of strings,
where the encoding of each string i1n the vector of strings
consists of a fixed-byte encoding of the string’s length, fol-
lowed by the string 1tseld.

The associated-data techniques we have described are
applicable to any authenticated-encryption scheme, without
restriction. The technique can be used 1n conjunction with the
other inventive teachings, or the technique can be used 1nde-
pendently. Its use 1n conjunction with other inventive teach-
ings does not limit the scope of those teachings, and mecha-
nisms which allow the presence of associated-data should be
understood as covered by claims which do not explicitly refer
to the presence of associated-data.

Description of OCB 1n Terms of a Tweakable Block Cipher

A convenient way to conceptualize OCB 1s 1n terms of a
tweakable block cipher, a notion suggested by Richard
Schroeppel in his paper The hasty pudding cipher, which was
submitted to the National Institute of Standards and Technol-
ogy (NIST) 1n 1998 as an Advanced Encryption Standard
(AES) candidate and 1s available on a NIST web page. The
notion of a tweakable block cipher was later named and
studied by Liskov, Rivest, and Wagner 1n their paper Tiveak-
able block ciphers, published in Advances in Cryptology—
CRYPTO 2002, Lecture Notes in Computer Science, vol.
2442, Springer-Verlag, 2002, who also pointed out the utility
of the concept 1n understanding the workings of OCB.

A tweakable block cipher E (bold E) 1s like an ordinary
block cipher E except that it takes one further argument, the
tweak. The tweak was originally called the spice 1n Schroep-
pel’s paper. A tweakable block cipher E thus takes three
values as input: a key K, a tweak T, and a plaintext block X
having some fixed number n of bits. The output 1s a ciphertext
block Y=E(K,T, X) having n bits. The block length will usu-
ally be n=64 or n=128 bits. It 1s required that for each key K
and tweak T, the function E(K,T,-) 1s a permutation on the set
ol n-bit strings. For a tweakable block cipher to be deemed
good 1t 1s necessary that as the tweaks T vary, the different
block ciphers named by each tweak act independently from
one another; 1t 1s as though each tweak T specifies 1ts own
different version of the block cipher. The space of allowed
tweaks depends on the tweakable block cipher E.

We now describe OCB 1 terms of a tweakable block
cipher, the mechanism that we call OCB-from-a-tweakable-
block-cipher. See FIG. 11, where encryption under OCB-
from-a-tweakable-block-cipher utilizes a tweakable block
cipher E that takes tweaks that are triples of values. In the
figure, the tweak T for the blockcipher E 1s written as a

superscript to E and the key K of E 1s written as a subscript.
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The first component 1n E’s tweak 1s the nonce Nonce. This
nonce would typically be an n-bit string. It need not be a
counter or a random value; 1t may be any value that, with high
probability, 1s used at most once during a session. The second
component in E’s tweak 1s an integer index. The minimal
value for this index 1s 1 and the maximal possible value m_,

1s the length of the longest message that can be encrypted Wlth
the scheme, measured in n-bit blocks. The third component of
the tweak 1s 0, 1, or 2.

To encrypt a message M using a key K and nonce Nonce,
the message 1s first partitioned into M| 1] . . . M[m] where each
block M[1] has n bits except for the last block M[m], which
may be shorter. The final block M[m] 1s called the message
fragment. For each position 1 between 1 and m-1, plaintext
block M[1] 1s encrypted mto a ciphertext block C[1] by apply-
ing the tweakable block cipher E to M]1], the tweakable block
cipher keyed by K and tweaked by (Nonce, 1, 0). To encrypt
the message fragment M[m], the tweakable block cipher E 1s
first applied to the n-bit string that encodes the length of
M[m], the tweakable block cipher E keyed by K and tweaked
by (Nonce, m, 1). The result of this tweakable block cipher
call 1s an n-bit string Pad, the IM[m]|-bit prefix of which is
xored with M[m] to obtain the ciphertext fragment C[m)].
Next an n-bit string Checksum i1s computed by xoring
together M| 1], ..., M[m-1], Pad, and C[m]0*, the last string
denoting, as before, C[m] with enough 0-bits appended at the
end to bring the resulting string to n bits. The tweakable block
cipher E 1s applied to Checksum to obtain the authentication
tag FullTag, this invocation of the tweakable block cipher
keyed by K and tweaked by the triple (Nonce, m, 2). The
string FullTag 1s then modified by xoring in the n-bit string
Auth that results from applying a pseudorandom function F,
keyed by K, to associated-data AD and then truncating the
result to some desired number t of bits, obtaining an authen-
tication tag Tag. The final ciphertext1s C=CJ1] ... C[m] Tag,
which 1s transmitted along with the nonce Nonce and the
associated-data AD to the recerver. The portion C[1] ... C[m]
of C 1s called the ciphertext core. It’s length 1s the same length
as M=M[1] ... M|m] even when M|m] has fewer than n bits.
(Obviously padding M would not obtain this property.) The
receiver recovers the message M from C 1n the natural way,
making sure to check that the tag Tag that 1s received 1s the tag
that 1s expected for this ciphertext, given the nonce and the
associated-data.

There are many ways (o realize OCB-1from-a-tweakable-
block-cipher using a conventional block cipher E. Each way
requires constructing the needed tweakable block cipher E
from a conventional block cipher E. Our prior definition of
OCB corresponds to implementing E from E according to:

E(K,(Nonce,i,0),X)=ADE A XDA) and
E(K,(Nonce,i, 1),X)=F (XDADLx"') and

E(K,(Nonce,i,2),X)=E A XDA) if j=2, where

A=y LR and R=E_ (Nonce) and [.=FE.(0). Recall that -
denotes multiplication 1n the finite field with 2" elements,
while y, denotes the i”" string in a Gray-code-ordered
sequence of strings. Thus the OCB mechanisms specified
carlier 1s the particular instantiation of OCB-from-a-tweak-
able-block-cipher.

An alternative instantiation of the tweakable block cipher E
from a conventional block cipher E 1s to set

E(K,(Nonce.i,0),X)=ADE (XDA) where A=2"-L and
L=FE(Nonce),
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E(K,(Nonce,i,1),X)=E {XDA) where A=2"-L and
L=FE{(Nonce), and

E(K,(Nonce,i,2),X)=F A XDA) where A=2"3-L and
L=F ;{Nonce).

We emphasize that the - operator is not multiplication of >

integers but multiplication in the field with 2” elements. The
2'- operation is carried out by repeatedly doing left shifts and
a conditional xors (a total of 1 times). Multiplication by
3 (the -3 operation) 1s a leit shift, a conditional xor, and then
an xofr.

In FIG. 12 we describe the above instantiation of OCB-
from-a-tweakable-block-cipher 1n terms of the conventional
block cipher E from which E was built. We call the algorithm
OCB 2.0. The party that encrypts has a plamntext message
M=M]1] . .. M|m] where each M|1] 1s n bits except for the
message fragment M[m], which may have fewer than n bits.
The party that wants to encrypt M also has an n-bit nonce
Nonce and a key K for the conventional n-bit block cipher E,
and 1t has associated-data AD. An 1nitial offset A 1s computed
as A=E (Nonce). Then, for each 1 between 1 and m-1, the
tollowing 1s done: replace A by 2-A, the latter computed using
a shift and a conditional xor, and let C[1] be computed as
C[i]=E ~(M[i GEA)GBA When all m-1 full blocks are pro-
cessed the value A 1s again replaced by 2-A and C[m] 1s
obtained by xoring M[m] with the first IM[m]| bits of Pad=E .-
(IM[m]IDA). Next the string Checksum 1s computed by xor-
ing together C[1], ..., Clm-1], Pad, and C[m]0*. Replace A
by 3-A. The string FullTag=FE (Checksum(PA) is now com-
puted. This value 1s xored with Auth=F .(AD) and then trun-
cated to t bits to get the tag Tag. The ciphertext 1is
C=C[1]...C[m] Tag. This 1s transmitted along with the nonce
Nonce and the associated-data AD. Decryption proceeds in
the natural way. The encryption and decryption algorithms
are specified textually in Table 3.

The main advantage of OCB 2.0 over OCB 1s that offset
computation 1s simpler, with each oiffset being computed
from the prior one by a shift and conditional xor (the last
offset requires one extra xor). Each olffset computation is
therefore constant time and can be implemented with very
simple hardware or software. In addition, OCB 2.0 accom-
modates associated-data, this being handled in a particularly
elficient way (near zero per-message cost when associated-
data 1s held fixed). Other efficiency characteristics of OCB
and OCB 2.0 are the same; 1n particular, potentially expensive
multiplication 1n the ring of integers modulo 2” 1s avoided;
messages of arbitrary bit length can be encrypted and the
resulting ciphertext core C[1] . . . C[m] will always have
identical length as the plaintext M[1] ... M|m]; a single key
1s used for all block-cipher invocations; and no random num-
bers or counters are employed—an arbitrary nonce 1s suifi-
cient.

TABL

OCB2-Encrypt, (Nonce, AD, M)
Partition M into M[1] * = * M[m]
A =L _(Nonce)
for 1=1 to m-1 do
A=2*A
Cli]=E.(M[1]] A DA
A=2°*A
Pad = E _(len(M[m]) & A)
C[m] = Pad & M[m] // 1IC[m]l=IM[m]l; use Pad bits 1
C=C[l]***C[m] // Ciphertext core
Checksum =M[1] D e ** D M[m-1] & C[m]0* & Pad

(L.
(s

.. IM[m]|

A=3°A
FullTag = E, (Checksum & A)
Auth =F,_(AD) /1 A pseudorandom function like PMAC

Tag = (FullTag & Auth) [first t bits]
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TABLE 3-continued

return C | | Tag // The final ciphertext, C
OCB2-Decrypt, (Nonce, AD, C)
Partition C into C[1] * = * C[m] Tag
A =E_(Nonce)
for 1=1 to m-1 do
A=29*A
M[i]=E, . (C[i] D A) D A
A=2°A
Pad = E _(len(M[m] ) B A)
M[m] = Pad & C[m]
M=M[1]***M[m]
Checksum = M[1] D e ** D M[m-1] & C[m]0* & Pad
A=3°A
FullTag = E,. (Checksum & A)
Auth=F_(AD) /! A pseudorandom function like PMAC
Tag' = (FullTag & Auth) [first t bits]

if Tag=Tag' then return M else return 1nvalid

// IM[m]|=IC[m]l; use Pad bits 1 . . [C[m]|

Execution Vehicles

The encryption and the decryption process used by the
present invention may reside, without restriction, 1n software,
firmware, or 1n hardware. The execution vehicle might be a
computer CPU, such as those manufactured by Intel Corpo-
ration and used within personal computers. Alternatively, the
process may be performed within dedicated hardware, as
would typically be found 1n a cell phone or a wireless LAN
communications card or the hardware associated to the
Access Point mm a wireless LAN. The process might be
embedded 1n the special-purpose hardware of a high-pertor-
mance encryption engine. The process may be performed by
a PDA (personal digital assistant), such as a Palm Pilot®. In
general, any engine capable of performing a complex
sequence of instructions and needing to provide a privacy and
authenticity service 1s an appropriate execution vehicle for
the mnvention.

The various processing routines that comprise the present
invention may reside on the same host machine or on different
host machines interconnected over a network (e.g., the Inter-
net, an 1ntranet, a wide area network (WAN), or local area
network (LAN)). Thus, for example, the encryption of a mes-
sage may be performed on one machine, with the associated
decryption performed on another machine, the two commu-
nicating over a wired or wireless LAN. In such a case, a
machine running the present invention would have appropri-
ate networking hardware to establish a connection to another
machine in a conventional manner. Though we speak of a
Sender and a Recerver performing encryption and decryption,
respectively, 1n some settings (such as file encryption) the
Sender and Receiver are a single entity, at different points 1n
time.

The foregoing descriptions of embodiments of the present
invention have been presented for purposes of 1llustration and
description only. They are not intended to be exhaustive or to
limit the present mvention to the forms disclosed. Accord-
ingly, many modifications and variations will be apparent to
practitioners skilled 1n the art. Additionally, the above disclo-
sure 1s not intended to limit the present invention. The scope
of the present invention 1s defined by the appended claims.

What 1s claimed 1s:

1. A computer-implemented method for authenticated-en-
cryption that encrypts a plaintext into a ciphertext without
padding the plaintext, the method comprising:

partitioning the plaintext into a first plaintext portion hav-

ing a multiple of n bits and a second plaintext portion
having n—-1 or fewer bits;

using a nonce to generate a sequence of offsets;
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computing a first ciphertext portion having the same length
as the first plamtext portion from the first plaintext por-
tion, the sequence of oflsets, and an n-bit block cipher;

computing a second ciphertext portion having the same
length as the second plaintext portion from the second
plaintext portion, an oifset from the sequence of oflsets,
and the n-bit block cipher;

computing an n-bit authentication tag by using the n-bit
block cipher to encipher a value that depends on the
plaintext and an offset from the sequence of oflsets; and

defimng the ciphertext as the first ciphertext portion, the
second ciphertext portion, and a portion of the n-bit

authentication tag.
2. The method of claim 1 wherein the n-bit authentication

tag further depends on a string of non-confidential associated

data.

3. The method of claim 1 wherein the nonce 1s a counter
that gets incremented with every message encrypted.

4. The method of claim 1 wherein each non-initial offset
from the sequence of offsets 1s determined by xor-ing the
prior oifset with one of a plurality of key-dependent values.

5. A non-transitory computer-readable storage medium
storing 1nstructions that, when executed by a computer, cause
the computer to perform a method for authenticated-encryp-
tion that encrypts a plaintext into a ciphertext without padding,
the plaintext, the method comprising:

partitioning the plaintext into a first plaintext portion hav-

ing a multiple of n bits and a second plaintext portion
having n-1 or fewer bits;
using a nonce to generate a sequence of offsets;
computing a {irst ciphertext portion having the same length
as the first plaintext portion from the first plaintext por-
tion, the sequence of oflsets, and an n-bit block cipher;

computing a second ciphertext portion having the same
length as the second plaintext portion from the second
plaintext portion, an oifset from the sequence of oflsets,
and the n-bit block cipher;
computing an n-bit authentication tag by using the n-bit
block cipher to encipher a value that depends on the
plaintext and an offset from the sequence of offsets; and

defining the ciphertext as the first ciphertext portion, the
second ciphertext portion, and a portion of the n-bit
authentication tag.
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6. The non-transitory computer-readable storage medium
of claim 35, wherein the n-bit authentication tag further
depends on a string of non-confidential associated data.

7. The non-transitory computer-readable storage medium
of claim 5, wherein the nonce 1s a counter that gets incre-
mented with every message encrypted.

8. The non-transitory computer-readable storage medium
of claim 5, wherein each non-initial offset from the sequence
of offsets 1s determined by xor-ing the prior offset with one of
a plurality of key-dependent values.

9. A circuit to perform authenticated-encryption that
encrypts a plaintext mto a ciphertext without padding the
plaintext, the circuit comprising:

circuitry to partition the plaintext into a first plaintext por-

tion having a multiple of n bits and a second plaintext
portion having n-1 or fewer bits;

circuitry to use a nonce to generate a sequence of oflsets;

circuitry to compute a first ciphertext portion having the

same length as the first plaintext portion from the first
plaintext portion, the sequence of oflsets, and an n-bit
block cipher;

circuitry to compute a second ciphertext portion having the

same length as the second plaintext portion from the
second plaintext portion, an offset from the sequence of
offsets, and the n-bit block cipher;
circuitry compute an n-bit authentication tag by using the
n-bit block cipher to encipher a value that depends on the
plaintext and an offset from the sequence of ofisets; and

circuitry to define the ciphertext as the first ciphertext
portion, the second ciphertext portion, and a portion of
the n-bit authentication tag.

10. The circuit of claim 9, wherein the n-bit authentication
tag further depends on a string of non-confidential associated
data.

11. The circuit of claim 9, wherein the nonce 1s a counter
that gets incremented with every message encrypted.

12. The circuit of claim 9, wherein each non-initial offset
from the sequence of oifsets 1s determined by xor-ing the
prior oilset with one of a plurality of key-dependent values.

13. The circuit of claim 9, wherein the circuit 1s an appli-
cation-specific itegrated circuit (ASIC).

14. The circuit of claim 9, wherein the circuit 1s a field-
programmable gate array (FPGA).
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