
Guarding Numerics Amidst Rising Heterogeneity

Ganesh Gopalakrishnan∗, Ignacio Laguna†, Ang Li‡,
Pavel Panchekha§, Cindy Rubio-González¶ and Zachary Tatlock‖

Univ of Utah (ganesh@cs.utah.edu) ∗, LLNL (ilaguna@llnl.gov) †, PNNL (ang.li@pnnl.gov) ‡,

Univ of Utah (pavpan@cs.utah.edu) §, UC Davis (crubio@ucdavis.edu) ¶, UW (ztatlock@cs.washington.edu) ‖

Abstract—
New heterogeneous computing platforms—especially GPUs

and other accelerators—are being introduced at a brisk pace,
motivated by the goals of exploiting parallelism and reducing
data movement. Unfortunately, their sheer variety as well as
the optimization options supported by them have been observed
to alter the computed numerical results to the extent that
reproducible results are no longer possible to obtain without extra
effort. Our main contribution in this paper is to document the
scope and magnitude of this problem which we classify under the
heading of numerics. We propose a taxonomy to classify specific
problems to be addressed by the community, a few immediately
actionable topics as the next steps, and also forums within which
to continue discussions.

I. INTRODUCTION

The quest to exploit parallelism coupled with combating

data movement costs has necessitated the exploration of

newer computer architectures by the HPC community. At the

same time, these architectures are charged with the ability

to handle problems of ever-increasing scale and resolution

while maintaining energy-efficiency and productivity. These

problem solving methods are fundamentally important for

modern society, given that they play a crucial role in thousands

of important applications ranging from climate simulation [1]

to medical research [2], [3]. Unfortunately, the development

and testing of software for such applications now faces many

serious productivity crises brought about by the increased use

of heterogeneous computing elements.

In practical terms, extreme heterogeneity implies the use of

a variety of CPUs, GPUs, and other accelerators,1the adoption

of number representations and precision regimes different from

the IEEE-754 standard for floating-point arithmetic, the use

of compilers that perform aggressive optimizations, etc. Such

changes have both fundamental and pervasive impact through-

out the software stack, altering the computed results in subtle

ways. Testing and debugging these numerical correctness-

compromising aspects (“numerics” for short) is this paper’s

focus of discussion.

In upcoming HPC systems, the overall numerical integrity

can be affected by a variety of causes, not all of which are

fully understood or have been encountered in existing HPC

systems. This makes it important that the testing methods

we propose extrapolate trends that have been observed at the

1We use “GPU” to cover all types of accelerators, although the main
reference is to General Purpose GPUs made by Nvidia, AMD, Intel, etc.,
that are slated for introduction within upcoming large-scale DOE machines.

edge of today’s designs, and also remain nimble to adjust to

more such challenges. For example, problem-domain-specific

number systems are increasingly being employed (e.g., [4]),

and often compiler optimizations can go so far as altering the

basic science predictions [5]. It is important to develop testing

methods that address such aspects both within legacy codes

that are being ported to newer hardware and compilers, and

within brand-new codes that combine both HPC and machine

learning (ML) that have inherently different types of precision

and result-accuracy demands.

A central problem we will face at these upcoming scales and

levels of heterogeneity is that error tolerances are often unclear

even to experts. While the IEEE standard for floating-point

arithmetic clearly defines how much absolute (and relative)

rounding error is introduced by each basic operation, insisting

on meeting such rounding error targets can often be both

impractical and inefficient. Stating absolute error targets is

impractical because programmers do not know what error

bounds to specify for complex pieces of code. Furthermore,

all methods of rounding error estimation are overapproximate,

and do not easily scale to large applications. Already, alternate

criteria are under investigation. For example, in high-end HPC,

lossy compression algorithms (approaches that precision-tune

entire data planes) are bound to play an increasing role [6],

[7] and already measures such as signal-to-noise ratio (PSNR,

L2-norm error, etc. [8]) are under consideration as acceptable

result tolerances. Things could be even more extreme in ML

where the number of bits allocated are determined through

training [9]. Future testing frameworks in this area must

accommodate multiple acceptance criteria and help automate

their application.

Unfortunately, with multiple testing methods, we no longer

have one notion of when software correctly ports across

architectures, compilers, and precision regimes. While result

disagreement between platforms is no longer a surprising issue

in HPC [5], the manner in which variability arises within GPU-

based applications is much more nuanced, poorly understood

as well as rarely discussed. New GPUs are released once every

three years by multiple vendors. Despite adherence to the

IEEE standard, GPU hardware includes units such as special
function units and tensor cores that are fast, but also produce

result deviations from standards (elaborated in later sections).

GPUs are inherently poorer at reporting as well as handling

exceptions: there are no prevailing strong guidelines for this.

Meanwhile, the advance of GPUs themselves are motivated

9

2021 IEEE/ACM 5th International Workshop on Software Correctness for HPC Applications (Correctness)

978-1-6654-2061-7/21/$31.00 ©2021 IEEE
DOI 10.1109/Correctness54621.2021.00007

• Range of formats in GPUs

• Several rounding modes

• FMA complicates things

Floating-Point Formats

• Not supported in GPUs

• Detection required in codes

• Printf approach is suboptimal

Exceptions

• Data races are hard to detect

• Checking that reductions are

reproducible is challenging

Concurrency

• Aggressive optimizations

• Different compilers used in the

GPU and the host CPU

Compiler Effects

• Multiple precision leves supported

• Hard to tune and maintain

Mixed-Precision

• Error tolerance unknown

• Static testing is desirable

• More tools needed

Testing

A B C D E F

Fig. 1. Overview of the challenges faced in numerical applications for GPUs.

by their central role in Machine Learning where different

(and often softer) numerical and exception-related criteria are

applicable; HPC users are often forced to use these “ML

GPUs” as those are likely the best performers.

The upshot is that the HPC community is ill-prepared

to handle these lurking dangers of embracing heterogeneity.

Performance portability is clearly a central concern, and much

more attention is being devoted to it. While the correctness

community has documented many of these issues surrounding

GPUs [10], such studies are more geared toward handling

“traditional software defects”—for instance related to the

semantics of concurrency and synchronization. Our focus in

this paper is on numerical correctness (or “numerics” for short)

in the heterogeneous era, addressing GPU-based systems.

We organize our discussion by providing a taxonomy of the

various challenges confronting the numerics community due to

rising heterogeneity (§II). In §III, we emphasize the need for a

community portal to keep abreast of the evolution of numerics

across GPUs, and invite the community to join one such

forum [11]. Figure 1 is a conceptual view listing the headings

under which the problems we discuss can be classified, the

challenges faced by the community as well as solutions needed

in these areas.

II. CHALLENGES, SOLUTIONS

We provide the specifics of GPUs under the headings of

number formats and precision (§II-A), exceptions (§II-B),

variations caused by dynamic (concurrency/schedule) aspects

(§II-C), compiler-induced variability (§II-D), and mixed pre-

cision (§II-E). This sets the stage for discussing testing tools

for heterogeneous codes in §II-F.

A. Floating-Point Formats

GPUs provide a range of number formats, and the choice

of format is essential because these formats provide dramatic

cost/accuracy tradeoffs. There are, of course, the classic single

and double precision floating-point operations; for NVIDIA

GPUs, their performance is shown in Figure 2. IEEE-FP32

has been supported by NVIDIA GPUs ever since its first

generation, while IEEE-FP64 was enabled from compute-

capability 1.3 (CC-1.3).

But there are also more exotic formats; all the floating-

point formats supported by NVIDIA GPUs are listed in

Table I. Starting from the Jetson TX-1 embedded-system board

(CC-5.3), IEEE-FP16 was featured, and later introduced into

the next flagship Tesla-P100 GPUs. From P100 to V100 to

A100, the FP16 throughput (excluding tensor cores) increases

from 21.2 to 31.4 to 78 TFLOP/S. The Int8 vector multiply

operations were added in Tesla-P40 (CC-6.1) and from P40 to

V100, the Int8 throughput in CUDA cores increased from 48

to 64 TOP/S.

Modern GPUs contain tensor cores, which can execute

highly restricted operations with a complex mixture of pre-

cision choices while also yielding higher throughput. Tensor

cores were first featured in the Volta architecture (CC-7.0)

with only FP16 matrix-multiply-add (MMA) operations. Then,

the Turing architecture (CC-7.5) enabled Int-8, Int-4, and

Int-1 binary [12], [13] precision in tensor cores, and the

latest Ampere A100/A40 GPUs further support TF32, BF16

and FP64 formats for tensor cores, offering extra precision

choices. Brain floating-point 16 (BF16), proposed by Google

Brain, tackles the small dynamic range issue of FP16 in AI

utilization (BF16 is supported in Tensorflow and PyTorch).

Tensor floating-point 32 (TF32), firstly proposed in the latest

Ampere GPUs, serves as a reduced alternative to FP32; it

essentially uses 19 bits. The main advantage of TF32 is that

it has the same exponent bits as FP32, so that TF32-enabled

Ampere tensor cores can directly operate on FP32 inputs by

rounding from a 23-bit mantissa to a 10-bit mantissa, which

10

Fig. 2. Double/single/half-precision (i.e., DP/SP/HP) performance scaling for the NVIDIA HPC-focused Tesla GPUs from the first CUDA-enabled Tesla
architecture (CC-1.0) until the latest Ampere (CC-8.0/8.6) architecture. FMA refers to fused-multiply-add operations. The unit is trillion floating-point operations
per second (teraflops). The vertical axis is in log.

can then be multiplied, accumulated in FP32 and output in

FP32 for keeping high-precision. This approach of ”internally”

leveraging TF32 in tensor cores does not require any change

on FP32-based user-code. Not only have these capabilities

grown, they have also scaled in throughput. From Tesla V100

to A100 GPUs, the FP16 throughput of tensor cores grew

from 125 to 312 TFLOP/s, while for FP64, TF32 and BF16

the theoretical compute performance is 19.5, 156 and 312

TFLOP/S, respectively.

The point of this litany of precisions and features is to high-

light the diversity available and the importance of capitalizing

on it to achieve maximum performance. Unfortunately, not

only do GPUs support all of these precisions, they also support

a diversity of rounding modes. Modern GPUs support all 4

standard IEEE rounding modes (round to nearest, to zero, to

∞, and to −∞). Rounding modes can be changed by calling

specific intrinsics (like __fdiv_rz to divide while rounding

towards zero). Furthermore, the -ftz=true compiler flag can

flush denormal numbers to zero, which speeds up FP32

computation in GPUs with CC-2.0 or later.2 Here again, there

are a variety of choices. The FMA units in NVIDIA GPUs

can handle denormal numbers internally through hardware

so that operating on denormal numbers does not introduce

extra delay for multiply-add. However, for transcendental

functions such as square root, detecting and handling denormal

numbers incur considerable overhead. The aforementioned flag

enforces denormal numbers being flushed to zeros, avoiding

such overhead at the cost of potential degraded accuracy and

underflow. Again, intelligent selection of rounding modes can

speed up a program, but can also make it less accurate.

This variety points to the numerical reproducibility chal-

2Denormal numbers refer to floating points having leading zeros in their
mantissas for avoiding underflow, as normalization would result in a very tiny
exponent that is not representable.

TABLE I
FLOATING-POINT FORMAT SUPPORTED BY NVIDIA GPUS

Format Exponent Mantissa Sign
Double precision (FP64) 11 bits 52 bits 1 bit
Single precision (FP32) 8 bits 23 bits 1 bit
Half precision (FP16) 5 bits 10 bits 1 bit

Tensor floating-point 32 (TF32) 8 bits 10 bits 1 bit
Brain floating-point 16 (BF16) 8 bits 7 bits 1 bit

lenges waiting to be faced by anyone seeking performance

tradeoffs. While the changes in rounding or handling denor-

mals are rigorously specifiable, what becomes unknown is

how large-scale codes tend to behave under these variations.

Fasi et al. [14] summarize many such unspecified aspects of a

GPU and say “...from a numerical point of view, many essential
aspects of tensor cores are not specified. Community effort is
needed not only to detect and localize result-variability, but
also prevent unwarranted variability that hinders the reliable
porting of code. The user community must also have means

to gather and process these facts, even playing the role of a

(well-intended) vigilante. We now list other aspects that tend

to affect the numerics of the results computed by GPUs (some

of these remarks are applicable to CPUs while others largely

pertain to GPUs).

a) Fused-Multiply-Add (FMA): The FMA feature is cru-

cial for attaining high performance by combining two opera-

tions (+ and *) into one; unfortunately, the use of FMA can

bring about another dimension of variability. The magnitude

of FMA-induced variability is captured in climate codes [5]

where it is noted that the availability of FMA (and its use by

a compiler) affected existing codes to such an extent that the

statistics of the climatic predictions were drastically affected,

and went out of the acceptable realm of results. FMA itself

is standardized:3in 2008, the IEEE-754 standard was revised

11

to add fused-multiply-add operation, which increases perfor-

mance while eliminating one rounding step from otherwise

two in FP multiply and FP add, improving accuracy. NVIDIA

GPUs natively support FMA as a single instruction. By default,

the GPU compiler will automatically seek opportunities to fuse

the multiply and add operations sharing the same operand

into an FMA instruction. However, this can be turned off

through the –fmad=false compiler option, which might im-

prove performance for those applications with high register

pressure but low chance of jointly using multiply and add.

This is because FMA requires three operands being available

in registers simultaneously, which may further increase register

pressure [15]. This is harmful if little benefit can be accrued

through FMA.

b) Special Function Units (SFUs): The availability

of SFUs gives another opportunity to affect performance

tradeoffs—but under the scrutiny of rigorous correctness

checking methods. Our previous work shows that the SFUs

of GPUs can accelerate single-precision and double-precision

numeric transcendental-function calculations through hard-

ware implemented lookup tables [16], [17]. We published the

available capabilities per operation in single and double preci-

sion, reporting experimental results pertaining to precision and

latency. Also, a recent effort demonstrates that the V100 tensor

cores adopted in the OLCF Summit supercomputer essentially

implement higher precision than the claimed FP16, at least for

FMA instructions [18].

A major problem with these capabilities is that these char-

acteristics vary across GPUs, becoming obsolete every few

years. At the same time, GPU-based software is becoming

central to societally important areas such as helping fighting

SARS-CoV-2 [3]. Such software uses ML methods based on

subsystems such as variational auto-encoders that, in turn, have

efficient implementations in half-precision (e.g., [19]). While

these low precision uses are confined to ML, their use in HPC

will bring up the more stringent acceptance criteria that are

lacking today. As more such systems are built, their testing

methods must keep up; currently we are far from this goal.

B. Exceptions

In traditional CPU-based programming languages and sys-

tem software, several methods exist to detect floating-point

exceptions (e.g., division by zero, overflows and others). For

example, in Linux systems, when exceptions occur, one of

two things can happen. By default, the exception is simply

noted in the floating-point status word, and the program can

check the status word to find out which exceptions happened.

Alternatively, traps for exceptions can be enabled, which

allows the program to receive the SIGFPE signal. While the

default action for this signal is to terminate the program, the

effect of the signal can be changed.

On the other hand, the support to detect floating-point

exceptions in GPUs is limited and, in some cases, null. For

3There is also an element of confusion pertaining to FMA supported by
CPUs that sometimes employ 80-bit internal registers.

example, NVIDIA GPUs have no mechanism to detect that

a floating-point exception occurred according to the CUDA

Programming Guide [20]. The guide also states other devia-

tions of the CUDA implementation of floating-point arithmetic

with respect to the IEEE-754 standard, including that double-

precision floating-point absolute value and negation are not

compliant with IEEE-754 with respect to NaNs.

Since mechanisms to detect floating-point exceptions that

exist in CPU-based systems are not present in GPU systems,

programmers are left with almost no option other than using

printf statements in the application source code to catch

the result of exceptions. This is a less-than-ideal method—

printing in standard output from millions of threads can be

slow and error prone. Furthermore, some exceptions can be

miss-detected and affect control-flow without programmers

even noticing them.

Recently, the FPChecker tool [21] was proposed to detect

the result of exceptions in CUDA using an LLVM pass to

instrument LLVM IR instructions. The tool detects operations

that produce NaN, positive infinity, negative infinity, and

subnormal numbers (underflows). While the tool has been

effective in detecting several exceptions that were unknown

to users, it has some limitations: (1) it cannot be used on

all CUDA kernels (some limitations exist in clang/LLVM to

compile CUDA); (2) it does not catch exceptions from tensor

cores. Further work will be required to detect and handle

floating-point exceptions as HPC applications are ported to

heterogeneous systems that may not provide the same level of

support as originally assumed.

C. Concurrency and Schedule-Dependent Numerics

Numerical result deviations can be caused by undetected

data races as well as operator reassociations during reduction,

as now elaborated.

a) Data Races: Data races are caused by incorrectly

synchronized memory accesses [22], causing result variability.

It is well known that codes that contain data races can produce

unexpected results (even deadlocks [23]), and this can be

exacerbated by compiler optimizations [24]. The current state-

of-the-art in GPU data race checking is woefully inadequate.

Commercial race checkers such as Nvidia’s Cuda Memcheck

are incomplete in many ways (for instance, they do not handle

global memory data races). Despite the many academic race

checkers for GPUs (summarized and studied in [10]) and

more recent ones that offer compositional checking [25], race

checkers for GPUs are impossible to reliably construct given

that there is no rigorous specification accompanying GPU

synchronization primitives that also tend to vary with GPUs.

Another is the non-trivial engineering effort needed to build

and maintain front-end tools that can parse realistic GPU

codes. The ability to directly check data races on application

source codes is necessary for practitioner acceptance of the

tools. Currently established flows are largely for Clang/LLVM

but typically cover only subsets of GPU programming con-

structs in use.

12

b) Reassociations During Reduction: Many GPU codes

employ reduction operations such as addition that are non-

associative under the floating-point semantics. In some of the

reduction algorithms [26], the reduction order can depend

on the underlying GPU warp execution order. Some of the

more recent algorithms [27] tend to avoid this issue. User

discretion is thus required in selecting reduction algorithms

for the situation at hand.

D. Compiler Effects

Traditional HPC heterogeneous systems provide several

compilers, both commercial and open source. For example,

DOE CORAL HPC systems, such as Sierra, provide at least

five different compilers. Previous work has found that scien-

tific applications’ numerical results can be inconsistent when

compiled with different compilers or optimization flags [28],

[29]. A given code can be compiled with compiler x and

run on the host, and compiled with compiler y and run on

a device. When users want to compare the numerical results

that the code produces on different architectures, a challenging

question is: what combination of compilers (x, y) would
produce the most similar results in an HPC system? In our

previous work [28] we have shown that sometimes numerical

results could be as different as zero and 1e+300, or NaN (not

a number) and 0.1.

The key reason for such numerical inconsistencies is

that most of the aggressive compiler optimizations, e.g.,

-fast-math in gcc and clang, violate IEEE floating-point

semantics in exchange for faster code execution. These com-

piler optimizations make strong assumptions about the code’s

numerics, including that data is representable within the ranges

of normal floating-point numbers, i.e., there are no subnormal

numbers, infinity, or other extreme cases. While for some

applications, operating on such extreme numerical ranges is

acceptable, for others, it is not and it can lead to numerical

inconsistency and reproducibility problems.

Our past work has contributed bisection-based methods

for locating numerical variability at the file granularity [5],

[30]. It has further contributed to source-line-level variability

location search [29], [31]. Similar efforts are needed, covering

accelerators.

a) Performance Portability Isn’t Numerical Portability:
The ever-increasingly popular performance portability models

such as Kokkos [32] and RAJA [33] may help us mitigate the

complexity of achieving portable performance in the context

of compiling M different GPU codes targeting N different

platforms. While Nvidia is the dominant force in the area

of GPUs, other vendors will soon be delivering HPC-grade

discrete GPUs. Unfortunately, the extent to which performance

portability layers change the numerics is not studied. Accel-

erator code testing methods must be advanced to meet these

needs.

E. Mixed Precision

Considerable attention has been devoted to the generation of

CPU codes where only parts of the codebase are instantiated

at higher precision. We have done some of the earliest work

on precision tuning through the Precimonious tool [34], and

have stayed active in this area through collaborations [35]–

[38]. These approaches can potentially reduce data movement

costs and still keep rounding errors under control by allocating

precision where the computation demands it.

Unfortunately, mixed-precision GPU codes are very difficult

to create and reliably maintain. First of all, altering precision

wrecks the GPU memory layout discipline originally assumed

in the full precision codes. These layout optimizations that

promote coalesced memory accesses and avoid bank conflicts

are crucial for GPU codes—whatever be the precision they are

deployed at.

As an alternative to mixed precision, rewriting expressions

can help improve the floating-point accuracy of the original

expression without adjusting memory layout, and may also

help eliminate problems such as overflow. A tool such as

Herbie [39] can, for instance, conditionally change an ex-

pression sinx − tanx to the more accurate −(x3 + x5/4)/2
when |x| < 0.038. While rewriting helps preserve the original

memory layout, it has two drawbacks: (1) it directly impacts

performance, putting in a conditional expression in lieu of the

original expression; (2) selecting the expression to rewrite is

an unsolved challenge, especially from the point of view of

an overall codebase attempting to meet a given precision/per-

formance tradeoff. To some extent, these downsides can be

mitigated by incorporating cost estimates in the rewriting

process and biasing the tool away from branches. But the two

main drawbacks will still stand.

In [40], the authors extend Herbie to a new tool called

PHerbie that combines precision tuning with rewriting, pro-

ducing pareto-optimal versions of the original code. A tool

such as PHerbie is a great beginning, but with many steps

remaining to be accomplished in making the tool practical

for GPU usage in HPC codes. First, PHerbie’s cost model for

producing candidate (new) expressions is the node-count of the

new expression. Given the plethora of implementation options

that GPUs support and the dominance of data movement costs

over computational costs in many applications, more work is

needed to extend PHerbie’s cost model and also obtain real

runtime measurements after the rewritten codes are installed.

Expression rewriting has one distinct advantage in the GPU

context: it can often replace an expression that tends to

overflow with another that does not overflow. This can be

a huge advantage for GPU codes, given that GPUs cannot

detect and report the overflow exception. As an example, we

have prototyped the use of the hypot function (also suggested

by Herbie) to compute the hypotenuse [41] observing the

elimination of overflow for many input ranges—showing the

advantages of rewriting in the GPU-context.

F. Testing Challenges

HPC software testing consumes a significant amount of an

organization’s resources. The basic problem begins with HPC

not having a strong tradition of software testing. For instance,

testers such as QuickCheck [42] have been ported to dozens

13

of programming languages, and Fuzzers [43] are the go-to

tools for testing. For this to happen for HPC, concerted effort

is needed, beginning with clear interface specifications—and

HPC component interfaces are inherently very broad, poorly

specified and poorly understood. The general challenges of

writing portable GPU codes have been studied [44]; such

studies must now be repeated given the passage of time.

III. CONCLUSIONS, COMMUNITY ENGAGEMENT

In this paper, we summarize how numerical issues are af-

fected by the growing heterogeneity of hardware and software.

While we did not intent our discussions to pertain to any

specific company, it is clear that we ended up surveying what

is dominant in the HPC arena today—namely products from

Nvidia Inc. For the sake of completeness, we now discuss a

few other GPU types.4

We have located two papers about AMD GPUs, both

from the same group. In [45], the authors opine: While
there is a general feeling that things are a bit more “open
source,” the openness of AMD’s software does not mean that
their scheduling behavior is obvious, especially due to sparse,
scattered documentation. Their paper is an attempt to gather

the disparate pieces of documentation into a single coherent

source. In [46], they remark: We argue that an open software
stack such as ROCm may be able to provide much-needed
flexibility and reproducibility in the context of real-time GPU
research, where new algorithmic or analysis techniques should
typically remain agnostic to the underlying GPU architecture.
In support of this claim, we summarize how closed-source
platforms have obstructed prior research using NVIDIA GPUs,
and then demonstrate that AMD may be a viable alternative
by modifying components of the ROCm software stack to
implement spatial partitioning. A paper on Intel GPUs [47]

talks about accelerating encrypted computing.

Community Engagement: The issues discussed thus far

clearly bring out the need for better information exchange

between GPU vendors and GPU users. Given the volume

of information coming out, various community forums must

also be formed. In addition to English descriptions of various

issues, one must also try and develop pithy examples that

highlight the issues being discussed. These organizations can

also distribute reliable idioms for use by programmers, thus

avoiding needless and error-prone reinvention.

Perhaps one of the best ways to respond to the upcoming

challenges in the upcoming era of heterogeneity is to organize

a collection of proxy applications (similar to ECP Proxy

Applications [48]) that allows the community to develop and

evaluate correctness checking tools. In [49], under the aus-

pices of a DOE-sponsored project, we have begun collecting

proxy applications that emphasize the use of GPUs. We also

document tool design efforts that are in progress in our

group. We also welcome participation through a forum called

FPBench [11] under the auspices of which we hold monthly

4We deliberately avoid discussing GPUs and accelerators in the mobile and
embedded space where one might find significantly more variety.

community meetings, to which we welcome the interested. We

are eager to find out what similar organizational activities exist

elsewhere and are interested in joining forces.

Acknowledgements: The authors gratefully acknowledge

funding from the DOE Award DE-FOA-0002460: X-Stack:

Programming Environments for Scientific Computing under

which the ComPort effort (this work) is being carried out.

REFERENCES

[1] T. Kurth, S. Treichler, J. Romero, M. Mudigonda, N. Luehr, E. H.
Phillips, A. Mahesh, M. Matheson, J. Deslippe, M. Fatica, Prabhat,
and M. Houston, “Exascale deep learning for climate analytics,” in
Proceedings of the International Conference for High Performance
Computing, Networking, Storage, and Analysis, SC 2018, Dallas, TX,
USA, November 11-16, 2018. IEEE / ACM, 2018, pp. 51:1–51:12.
[Online]. Available: http://dl.acm.org/citation.cfm?id=3291724

[2] F. D. Natale, H. Bhatia, T. S. Carpenter, C. Neale, S. K. Schumacher,
T. Oppelstrup, L. Stanton, X. Zhang, S. Sundram, T. R. W. Scogland,
G. Dharuman, M. P. Surh, Y. Yang, C. Misale, L. Schneidenbach,
C. Costa, C. Kim, B. D’Amora, S. Gnanakaran, D. V. Nissley,
F. H. Streitz, F. C. Lightstone, P. Bremer, J. N. Glosli, and
H. I. Ingólfsson, “A massively parallel infrastructure for adaptive
multiscale simulations: modeling RAS initiation pathway for cancer,”
in Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, SC 2019, Denver,
Colorado, USA, November 17-19, 2019, M. Taufer, P. Balaji, and
A. J. Peña, Eds. ACM, 2019, pp. 57:1–57:16. [Online]. Available:
https://doi.org/10.1145/3295500.3356197

[3] L. Casalino, A. Dommer, Z. Gaieb, E. P. Barros, T. Sztain, S.-H.
Ahn, A. Trifan, A. Brace, A. Bogetti, H. Ma, H. Lee, M. Turilli,
S. Khalid, L. Chong, C. Simmerling, D. J. Hardy, J. D. C.
Maia, J. C. Phillips, T. Kurth, A. Stern, L. Huang, J. McCalpin,
M. Tatineni, T. Gibbs, J. E. Stone, S. Jha, A. Ramanathan, and
R. E. Amaro, “Ai-driven multiscale simulations illuminate mechanisms
of sars-cov-2 spike dynamics,” bioRxiv, 2020. [Online]. Available:
https://www.biorxiv.org/content/early/2020/11/20/2020.11.19.390187

[4] U. Köster, T. J. Webb, X. Wang, M. Nassar, A. K. Bansal, W. H.
Constable, O. H. Elibol, S. Gray, S. Hall, L. Hornof, A. Khosrowshahi,
C. Kloss, R. J. Pai, and N. Rao, “Flexpoint: An adaptive numerical
format for efficient training of deep neural networks,” in Proceedings
of the 31st International Conference on Neural Information Processing
Systems, ser. NIPS’17. Red Hook, NY, USA: Curran Associates Inc.,
2017, p. 1740–1750.

[5] D. H. Ahn, A. H. Baker, M. Bentley, I. Briggs, G. Gopalakrishnan,
D. M. Hammerling, I. Laguna, G. L. Lee, D. J. Milroy, and
M. Vertenstein, “Keeping Science on Keel When Software Moves,”
Commun. ACM, vol. 64, no. 2, p. 66–74, Jan. 2021. [Online]. Available:
https://doi.org/10.1145/3382037

[6] A. Fox, J. Diffenderfer, J. Hittinger, G. Sanders, and P. Lindstrom,
“Stability analysis of inline ZFP compression for floating-point data in
iterative methods,” SIAM J. Sci. Comput., vol. 42, no. 5, pp. A2701–
A2730, 2020. [Online]. Available: https://doi.org/10.1137/19M126904X

[7] X. Zou, T. Lu, W. Xia, X. Wang, W. Zhang, H. Zhang, S. Di, D. Tao,
and F. Cappello, “Performance optimization for relative-error-bounded
lossy compression on scientific data,” IEEE Trans. Parallel Distributed
Syst., vol. 31, no. 7, pp. 1665–1680, 2020. [Online]. Available:
https://doi.org/10.1109/TPDS.2020.2972548

[8] K. Zhao, S. Di, X. Liang, S. Li, D. Tao, J. Bessac, Z. Chen, and
F. Cappello, “Sdrbench: Scientific data reduction benchmark for lossy
compressors,” CoRR, vol. abs/2101.03201, 2021. [Online]. Available:
https://arxiv.org/abs/2101.03201

[9] S. Gopinath, N. Ghanathe, V. Seshadri, and R. Sharma, “Compiling
kb-sized machine learning models to tiny iot devices,” in Proceedings
of the 40th ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2019, Phoenix, AZ, USA, June
22-26, 2019, K. S. McKinley and K. Fisher, Eds. ACM, 2019, pp.
79–95. [Online]. Available: https://doi.org/10.1145/3314221.3314597

[10] L. van den Haak, A. Wijs, M. van den Brand, and M. Huisman, “Formal
methods for gpgpu programming: Is the demand met?” in Integrated For-
mal Methods - 16th International Conference, IFM 2020, Proceedings,
ser. Lecture Notes in Computer Science (including subseries Lecture

14

Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),
B. Dongol and E. Troubitsyna, Eds. Germany: Springer, 2020, pp.
160–177, 16th International Conference on Integrated Formal Methods,
IFM 2020 ; Conference date: 16-11-2020 Through 20-11-2020.

[11] http://fpbench.org/.
[12] A. Li and S. Su, “Accelerating binarized neural networks via bit-tensor-

cores in turing gpus,” IEEE Transactions on Parallel and Distributed
Systems, vol. 32, no. 7, pp. 1878–1891, 2020.

[13] B. Feng, Y. Wang, T. Geng, A. Li, and Y. Ding, “Apnn-tc: Accelerating
arbitrary precision neural networks on ampere gpu tensor cores,” arXiv
preprint arXiv:2106.12169, 2021.

[14] M. a. d. H. N. Fasi, M. Mikaitis, and P. S, “Numerical
behavior of nvidia tensor cores,” 2021. [Online]. Available: https:
//doi.org/10.7717/peerj-cs.330

[15] A. Li, S. L. Song, A. Kumar, E. Z. Zhang, D. Chavarrı́a-Miranda, and
H. Corporaal, “Critical points based register-concurrency autotuning for
gpus,” in 2016 Design, Automation & Test in Europe Conference &
Exhibition (DATE). IEEE, 2016, pp. 1273–1278.

[16] S. F. Oberman and M. Y. Siu, “A high-performance area-efficient
multifunction interpolator,” in 17th IEEE Symposium on Computer
Arithmetic (ARITH’05). IEEE, 2005, pp. 272–279.

[17] A. Li, S. L. Song, M. Wijtvliet, A. Kumar, and H. Corporaal, “Sfu-driven
transparent approximation acceleration on gpus,” in Proceedings of the
2016 International Conference on Supercomputing, 2016, pp. 1–14.

[18] B. Feng, Y. Wang, G. Chen, W. Zhang, Y. Xie, and Y. Ding, “Egemm-
tc: accelerating scientific computing on tensor cores with extended
precision,” in Proceedings of the 26th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, 2021, pp. 278–291.

[19] M. Seznec, N. Gac, A. Ferrari, and F. Orieux, “A study on convolution
using half-precision floating-point numbers on gpu for radio astronomy
deconvolution,” in 2018 IEEE International Workshop on Signal Pro-
cessing Systems (SiPS). IEEE, 2018.

[20] NVIDIA, “CUDA C++ Programming Guide, v11.4,” https://docs.
nvidia.com/cuda/pdf/CUDA C Programming Guide.pdf, 2019, online;
accessed August, 10, 2021.

[21] I. Laguna, “FPChecker: Detecting floating-point exceptions in GPU
applications,” in 2019 34th IEEE/ACM International Conference on
Automated Software Engineering (ASE). IEEE, 2019, pp. 1126–1129.

[22] R. Netzer and B. P. Miller, “What are race conditions? some issues and
formalizations,” ACM Letters on Programming Languages and Systems,
1992.

[23] A. Li, G.-J. van den Braak, H. Corporaal, and A. Kumar, “Fine-grained
synchronizations and dataflow programming on gpus,” in Proceedings
of the 29th ACM on International Conference on Supercomputing, 2015,
pp. 109–118.

[24] S. Atzeni, G. Gopalakrishnan, Z. Rakamarić, D. H. Ahn, I. Laguna,
M. Schulz, G. L. Lee, J. Protze, and M. S. Müller, “Archer: Effectively
spotting data races in large OpenMP applications,” in 2016 IEEE
International Parallel and Distributed Processing Symposium (IPDPS),
2016, pp. 53–62.

[25] T. Cogumbreiro, J. Lange, D. L. Z. Rong, and H. Zicarelli, “Checking
data-race freedom of gpu kernels, compositionally,” in Computer Aided
Verification, A. Silva and K. R. M. Leino, Eds. Cham: Springer
International Publishing, 2021, pp. 403–426.

[26] [Online]. Available: https://developer.nvidia.com/blog/
faster-parallel-reductions-kepler/

[27] [Online]. Available: https://developer.download.nvidia.com/assets/cuda/
files/reduction.pdf

[28] I. Laguna, “Varity: Quantifying Floating-Point Variations in HPC Sys-
tems Through Randomized Testing,” in 2020 IEEE International Parallel
and Distributed Processing Symposium (IPDPS), 2020.

[29] H. Guo, I. Laguna, and C. Rubio-González, “pliner: Isolating lines
of floating-point code for compiler-induced variability,” in 2020 SC20:
International Conference for High Performance Computing, Networking,
Storage and Analysis (SC). IEEE Computer Society, pp. 680–693.

[30] M. Bentley, I. Briggs, G. Gopalakrishnan, D. H. Ahn, I. Laguna, G. L.
Lee, and H. E. Jones, “Multi-Level Analysis of Compiler-Induced
Variability and Performance Tradeoffs,” in Proceedings of the 28th
International Symposium on High-Performance Parallel and Distributed

Computing, ser. HPDC 19. ACM, June 2019, pp. 61–72. [Online].
Available: http://doi.acm.org/10.1145/3307681.3325960

[31] A. Sanchez-Stern, P. Panchekha, S. Lerner, and Z. Tatlock, “Finding root
causes of floating point error,” SIGPLAN Not., vol. 53, no. 4, p. 256–269,
Jun. 2018. [Online]. Available: https://doi.org/10.1145/3296979.3192411

[32] H. Carter Edwards, C. R. Trott, and D. Sunderland, “Kokkos,” J.
Parallel Distrib. Comput., vol. 74, no. 12, p. 3202–3216, Dec. 2014.
[Online]. Available: https://doi.org/10.1016/j.jpdc.2014.07.003

[33] D. A. Beckingsale, J. Burmark, R. Hornung, H. Jones, W. Killian, A. J.
Kunen, O. Pearce, P. Robinson, B. S. Ryujin, and T. R. Scogland,
“Raja: Portable performance for large-scale scientific applications,” in
2019 IEEE/ACM International Workshop on Performance, Portability
and Productivity in HPC (P3HPC), 2019, pp. 71–81.

[34] C. Rubio-González, C. Nguyen, H. D. Nguyen, J. Demmel, W. Kahan,
K. Sen, D. H. Bailey, C. Iancu, and D. Hough, “Precimonious: Tuning
Assistant for Floating-Point Precision,” in Supercomputing (SC), 2013,
pp. 27:1–27:12, https://github.com/corvette-berkeley/precimonious.

[35] H. Guo and C. Rubio-González, “Exploiting community structure for
floating-point precision tuning,” in Proceedings of the 27th ACM
SIGSOFT International Symposium on Software Testing and Analysis,
ISSTA 2018, Amsterdam, The Netherlands, July 16-21, 2018, F. Tip
and E. Bodden, Eds. ACM, 2018, pp. 333–343. [Online]. Available:
https://doi.org/10.1145/3213846.3213862

[36] fpanalysistools.org.
[37] C. Rubio-González, C. Nguyen, B. Mehne, K. Sen, J. Demmel, W. Ka-

han, C. Iancu, W. Lavrijsen, D. H. Bailey, and D. Hough, “Floating-
point precision tuning using blame analysis,” in ICSE. ACM, 2016,
pp. 1074–1085.

[38] W.-F. Chiang, M. Baranowski, I. Briggs, A. Solovyev,
G. Gopalakrishnan, and Z. Rakamarić, “Rigorous Floating-Point Mixed-
Precision Tuning,” in Proceedings of the ACM SIGPLAN Symposium
on Principles of Programming Languages (POPL). ACM, 2017, pp.
300–315. [Online]. Available: https://doi.org/10.1145/3009837.3009846

[39] P. Panchekha, A. Sanchez-Stern, J. R. Wilcox, and Z. Tatlock,
“Automatically Improving Accuracy for Floating Point Expressions,” in
Proceedings of the 36th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2015. ACM, 2015, pp.
1–11. [Online]. Available: http://doi.acm.org/10.1145/2737924.2737959

[40] B. Saiki, O. Flatt, Z. Tatlock, P. Panchekha, and C. Nandi, “Combining
precision tuning and rewriting for faster, more accurate programs,”
in ARITH: 28th IEEE Symposium on Computer Arithmetic, 2021.
[Online]. Available: http://arith2021.arithsymposium.org/

[41] [Online]. Available: https://en.wikipedia.org/wiki/Hypot
[42] K. Claessen and J. Hughes, “A lightweight tool for random testing of

haskell programs,” in International Conference on Functional Program-
ming, 2000.

[43] B. Miller, M. Zhang, and E. Heymann, “The relevance of classic fuzz
testing: Have we solved this one?” IEEE Transactions on Software
Engineering, 2020, accepted for publication in 2021; copy posted at
http://pages.cs.wisc.edu/∼bart/fuzz/.

[44] M. Leeser, D. Yablonski, D. H. Brooks, and L. A. S. King, “The
challenges of writing portable, correct and high performance libraries
for gpus,” SIGARCH Comput. Archit. News, vol. 39, no. 4, pp. 2–7,
2011. [Online]. Available: https://doi.org/10.1145/2082156.2082158

[45] N. Otterness and J. H. Anderson, “Exploring amd GPU scheduling
details by experimenting with “worst practices”,” in 29th International
Conference on Real-Time Networks and Systems, ser. RTNS’2021.
New York, NY, USA: Association for Computing Machinery, 2021, p.
24–34. [Online]. Available: https://doi.org/10.1145/3453417.3453432

[46] ——, “AMD GPUs as an alternative to Nvidia for supporting real-time
workloads,” dOI 10.4230/LIPIcs.ECRTS.2020.12, Article No. 12; pp.
12:1–12:23, Leibniz International Proceedings in Informatics, Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Ger-
many.

[47] Y. Zhai, M. Ibrahim, Y. Qiu, F. Boemer, Z. Chen, A. Titov, and
A. Lyashevsky, “Accelerating encrypted computing on intel gpus,” 2021.

[48] https://proxyapps.exascaleproject.org/app/.
[49] https://xstack-fp.github.io/.

15

