
Finding Error-Handling Bugs in Systems Code
Using Static Analysis∗

Cindy Rubio-González Ben Liblit
Computer Sciences Department, University of Wisconsin–Madison
1210 W Dayton St., Madison, Wisconsin, United States of America

{crubio, liblit}@cs.wisc.edu

ABSTRACT
Run-time errors are unavoidable whenever software interacts
with the physical world. Unchecked errors are especially
pernicious in operating system file management code. Tran-
sient or permanent hardware failures are inevitable, and error-
management bugs at the file system layer can cause silent,
unrecoverable data corruption. Furthermore, even when devel-
opers have the best of intentions, inaccurate documentation can
mislead programmers and cause software to fail in unexpected
ways.

We use static program analysis to understand and make er-
ror handling in large systems more reliable. We apply our
analyses to numerous Linux file systems and drivers, finding
hundreds of confirmed error-handling bugs that could lead to
serious problems such as system crashes, silent data loss and
corruption.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifica-
tion—formal methods, reliability, validation; D.2.5 [Software
Engineering]: Testing and Debugging—error handling and
recovery; D.4.3 [Operating Systems]: File Systems Manage-
ment

Keywords
Static program analysis, weighted pushdown systems, interpro-
cedural dataflow analysis

1. INTRODUCTION
Incorrect error handling is a longstanding problem in many

application domains. Ideally, some action should be taken
whenever an error occurs (e.g., notification, attempted recovery,
etc.), however that is often overlooked. Error handling accounts
for a significant portion of the code in large software systems.
Nevertheless error handling is not the primary concern to be
implemented [1]. Error-handling code is in general the least
understood, documented and tested part of a system, and as a
consequence, the buggiest [5]. It is difficult to write correct
∗Supported in part by AFOSR grant FA9550-07-1-0210; DoE
contract DE-SC0002153; LLNL contract B580360; NSF grants
CCF-0621487, CCF-0701957, and CCF-0953478; and a gener-
ous gift from the Mozilla Corporation. Any opinions, findings,
conclusions, or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views of
the sponsoring institutions.

error handling. Exceptional conditions must be considered
during all phases of software development [18], introducing
interprocedural control flow that can be difficult to reason about
[3, 19, 22]. As a result, error-handling code is usually scattered
across different functions and files, making software more com-
plex and less reliable.

Modern programming languages such as Java, C++ and C#
provide exception-handling mechanisms. On the other hand,
C does not have explicit exception-handling support, thus pro-
grammers have to emulate exceptions in a variety of ways.
The return-code idiom is among the most popular idioms used
in large C programs, including operating systems. Errors are
represented as simple integer codes, where each integer value
represents a different kind of error. These error codes are
propagated through conventional mechanisms such as vari-
able assignments and function return values. Despite having
exception-handling support, many C++ applications also adopt
the return-code idiom. Unfortunately, the use of such idioms is
significantly error-prone and effort-demanding.

Our goal is to use static program analysis to understand and
make error handling in large systems more reliable. This in-
cludes 1) finding how error codes propagate through large and
complex systems; 2) using error-propagation information to
identify different kinds of error-handling bugs, many of which
could lead to serious problems such as system crashes, silent
data loss and corruption; 3) finding whether error-reporting
program documentation accurately reflects real system be-
havior; and 4) extracting high-level error-handling specifica-
tions that describe how the system should recover from er-
rors (in progress). We have applied our analyses to numerous
real-world, widely-used Linux file systems such as ext3 and
ReiserFS, written in C, and we have found hundreds of error-
handling bugs. The trustworthiness of this kind of applications
in handling errors is an upper bound on the trustworthiness
of all storage-dependent user applications. We are currently
extending our framework to analyze applications written in
other languages.

2. ERROR-HANDLING BUGS
We focus on finding three particular kinds of error-handling

bugs. The following subsections briefly describe them and
present some real-world examples.

2.1 Dropped Unhandled Errors
Error-management bugs at the file system layer can cause

silent, unrecoverable data corruption. We find error-code in-
stances that vanish before proper handling is performed in

mailto:crubio@cs.wisc.edu
mailto:liblit@cs.wisc.edu

1 int txCommit(...) {
2 ...
3 if (isReadOnly(...)) {
4 rc = −EROFS;
5 ...
6 goto TheEnd;
7 } ...
8

9 if (rc = diWrite(...)) // may return EIO
10 txAbort(...);
11

12 TheEnd: return rc;
13 }
14

15 int diFree(...) {
16 ...
17 rc = txCommit(...); // rc may contain error
18 ...
19 return 0; //rc out of scope
20 }

Figure 1: Example of an out-of-scope error in IBM JFS

Linux file systems [25]. We identify three general cases in
which unhandled errors are commonly lost: the variable hold-
ing the unhandled error value (1) is overwritten with a new
value, (2) goes out of scope, or (3) is returned by a function but
not saved by the caller.

Figure 1 depicts an out-of-scope error found in IBM JFS.
txCommit, starting on line 1, commits any changes that its
caller has made. This function returns EROFS if the file system
is read-only. txCommit also may propagate EIO from calling
diWrite on line 9. diFree calls txCommit on line 17, saving
the return value in variable rc. Unfortunately, diFree does not
check rc when the function exits. In fact, diFree always returns
0 on line 19, thereby claiming that the commit operation always
succeeds. Interestingly, all other callers of txCommit save and
propagate the return value correctly. This strongly suggests that
rc should be returned, and that the code as it stands is incorrect.

2.2 Defective Error/Pointer Interactions
Error codes are often temporarily or permanently encoded

into pointer values as they propagate. Linux introduces two
functions to convert (cast) error codes from integers to point-
ers and vice versa: ERR_PTR and PTR_ERR. The Boolean
function IS_ERR is used to determine whether a pointer vari-
able contains an error code. Error-valued pointers are not valid
memory addresses, and therefore require special care by pro-
grammers. Misuse of pointer variables that store error codes
can lead to serious problems such as system crashes, data cor-
ruption, unexpected results, etc. We find three classes of bugs
relating error valued pointers [24]: (1) bad pointer dereferences,
(2) bad pointer arithmetic, and (3) bad pointer overwrites.

Figure 2 shows an example of a bad dereference. Function
fill_super in the Coda file system calls function cnode_make
on line 5, which may return the integer error code ENOMEM
while storing the same error code in the pointer variable root.
The error is logged on line 8. If root is not NULL (line 14),
then function iput in the Virtual File System (VFS) is invoked
with variable root as parameter. This function dereferences the
potential error-valued pointer parameter inode on line 21.

1 static int fill_super(...) {
2 int err;
3 inode ∗root = ...;
4 ...
5 err = cnode_make(&root,...); // err and root may get error
6

7 if (err || !root) {
8 printk("... error %d\n", err);
9 goto fail;

10 }
11 ...
12 fail:
13 ...
14 if (root) // root may contain an error
15 iput(root);
16 ...
17 }
18

19 void iput(inode ∗inode) {
20 if (inode) {
21 BUG_ON(inode−>i_state == ...); // bad pointer deref
22 ...
23 }
24 }

Figure 2: Example of a bad pointer dereference. The Coda
file system propagates an error-valued pointer which is derefer-
enced by the VFS (function iput).

2.3 Error Code Mismatches Between Code
and Documentation

Inaccurate documentation can mislead programmers and
cause software to fail in unexpected ways. We consider whether
the manual pages that document Linux kernel system calls
match the real source code’s behavior. We are particularly in-
terested in Linux file-system implementations because of their
importance and the large number of implementations available,
which might make the task of maintaining documentation even
harder. Our task is to examine the Linux source code to find the
sets of error codes that system calls return and compare these
against the information given in the Linux manual pages to find
errors that are returned to user applications but not documented
[23].

3. APPROACH
Finding error-handling bugs requires understanding how er-

ror codes propagate through systems code. We have designed
and implemented an error propagation analysis (see Section 3.1)
that finds the set of values that variables may contain at differ-
ent program points. Given this information, the error-handling
bugs described in Section 2 are detected using a second pass
over the code (see Section 3.2).

3.1 Error Propagation Analysis
The main component of our framework is an interprocedural,

flow- and context-sensitive static analysis that tracks errors as
they propagate. The analysis resembles an over-approximating
counterpart to a typical (under-approximating) copy constant
propagation analysis, but with certain additional specializations
for Linux code (which plan to extend for user applications). For

example, we recognize high-level error-handling patterns found
in Linux, which allow us to distinguish between handled and
unhandled error codes. Our analysis is unsound in the presence
of pointers, but has been designed for a balance of precision
and accuracy that is useful to kernel developers in practice.

We formulate and solve the error propagation problem using
weighted pushdown systems (WPDS). A WPDS is a useful
dataflow engine for problems that can be encoded with suitable
weight domains, computing the meet-over-all-paths solution. A
WPDS consists of three main components: a pushdown system
(PDS), a bounded idempotent semiring, and a mapping from
PDS rules to associated weights. The PDS models the control
flow of the program. The bounded idempotent semiring defines,
for example, what to do when the program control flow merges
(combine operator). We define each element of the bounded
idempotent semiring and transfer functions for each construct
in the program [23–25].

The state of the program at each program point is represented
by a mapping from variables to sets containing variables, er-
ror values (one of 34 predefined integer values), OK (used to
represent all non-error constants) and/or uninitialized (used to
represent uninitialized values). These mappings are the weights.
Transfer functions define the new state of the program as a func-
tion of the old state. This is interpreted as giving the possible
values of each variable following execution of a given program
statement in terms of the other values of constants and variables
before that statement.

After solving the WPDS, we can determine, at each program
point, the set of error codes each variable might contain. Given
this information, we detect a variety of error-handling related
bugs using a second pass over the code.

3.2 Finding Error-Handling Bugs
We perform a poststar query [21] on the WPDS, with the be-

ginning of the program as the starting configuration. For kernel
analysis, we synthesize a main function that nondeterministi-
cally calls all exported entry points of the file system under
analysis. The result is a weighted automaton. We apply the
path_summary algorithm of Lal et al. [16] to read out weights
from this automaton. We retrieve the weight representing ex-
ecution from the beginning of the program to any particular
point of interest. Program points of interest are determined by
the kind of error-handling bug we are looking for.

For example, the program points of interest when finding
dropped unhandled errors are those with program assignments.
We turn the three cases in which error codes are commonly lost
into a single case: overwritten errors. For out-of-scope errors,
we insert assignment statements at the end of each function.
These extra statements assign OK to each local variable except
for the variable being returned (if any). Thus, if any local
variable contains an unchecked error when the function ends,
then the error is overwritten by the inserted assignment and
our analysis detects the problem. In the case of unsaved errors,
for each function whose result is not already being saved by
the caller, we introduce a temporary local variable to hold that
result. These temporaries are overwritten with OK at the end of
the function, as described above. Thus, unsaved return values
are transformed into out-of-scope bugs. A systematic naming
convention for these newly-added temporary variables lets us
distinguish the two cases later so that they can be described
properly in diagnostic messages. Thus, both out-of-scope and
unsaved errors are ultimately turned into overwritten errors.

The goal is to find whether each assignment may overwrite
an error value. At each assignment p we retrieve the associated
weight w. Let S,T ⊆ C respectively be the sets of possible
constant values held by the source and target of the assignment,
as revealed by w. Note that w does not include the effect of
assignment p itself. Rather, it reflects the state just before p.
Then:

1. If T ∩Errors = /0, then the assignment cannot overwrite
any error code and is not examined.

2. If T ∩Errors = S = {e} for some single error code e,
then the assignment can only overwrite an error code
with the same error code and is not examined.

3. Otherwise, it is possible that this assignment will over-
write an error code with a different code. Such an assign-
ment is incorrect, and is presented to the programmer
along with suitable diagnostic information.

Different program points and rules are used to find bad error/-
pointer interactions [24] and error-code mismatches between
documentation and real code [23].

3.3 Sample Bug Report
In addition to the exact program location at which error-

handling bugs from Section 2 are found, our tool also produces
a sample path for each bug describing how a given error code
could have reached a particular program point.

Figure 3 shows a more detailed version of the VFS bad
pointer dereference from Figure 2. The error ENOMEM is first
returned by function iget in Figure 3a and propagated through
three other functions (cnode_make, fill_super and iput, in that
order) across two other files (shown in Figure 3b and Figure 3c).
The bad dereference occurs on line 1325 of file fs/inode.c in
Figure 3c. The sample path produced by our tool is shown
in Figure 3d. This path is automatically filtered to show only
program points directly relevant to the propagation of the error.
We also provide an unfiltered sample path, not included here,
showing every single step from the program point at which the
error is generated (i.e., the error macro is used) to the program
point at which the problem occurs. We list all other error codes,
if any, that may also reach there.

4. EXPERIMENTAL EVALUATION
Our implementation uses the CIL C front end [20] to apply

preliminary source-to-source transformations on Linux kernel
code. This includes redefining error code macros as distinctive
expressions to avoid mistaking regular constants for error codes.
We then traverse the CFG and emit a textual representation of
the WPDS. Our separate analysis tool uses the WALi WPDS
library [15] to perform the interprocedural dataflow analysis
on this WPDS. Within our WALi-based analysis code, we
encode weights using binary decision diagrams (BDDs) [2] as
implemented by the BuDDy BDD library [17].

We analyze 52 different Linux file systems and 4 drivers
separately along with the VFS and the Memory Management
module (mm). The following sections present the results for
each kind of error-handling bug.

4.1 Dropped Unhandled Errors
Developers and a local expert manually inspected each bug

report produced for five widely-used file systems (CIFS, ext3,

58 inode ∗ iget(...) {

· · ·

67 if (!inode)
68 return ERR_PTR(−ENOMEM);

· · ·

81 }

· · ·

89 int cnode_make(inode ∗∗inode, ...) {

· · ·

101 ∗inode = iget(sb, fid, &attr);}
102 if (IS_ERR(∗inode)) {
103 printk("...");
104 return PTR_ERR(∗inode);
105 }

(a) File fs/coda/cnode.c

143 static int fill_super(...) {

· · ·

194 error = cnode_make(&root, ...);
195 if (error || !root) {
196 printk("... error %d\n", error);
197 goto error;
198 }

· · ·

207 error:
208 bdi_destroy(&vc−>bdi);
209 bdi_err:
210 if (root)
211 iput(root);

· · ·

216 }

(b) File fs/coda/inode.c

1322 void iput(inode ∗inode) {
1323

1324 if (inode) {
1325 BUG_ON(inode−>i_state == ...);
1326

1327 if (...)
1328 iput_final(inode);
1329 }
1330 }

(c) File fs/inode.c

fs/coda/cnode.c:68: an unchecked error may be returned
fs/coda/cnode.c:101:"∗inode" receives an error from function "iget"
fs/coda/cnode.c:104:"∗inode" may have an unchecked error
fs/coda/inode.c:194:"root" may have an unchecked error
fs/coda/inode.c:211:"root" may have an unchecked error
fs/inode.c:1325: Dereferencing variable inode, which may contain error code ENOMEM

(d) Sample trace
Figure 3: Example of diagnostic output

ext4, IBM JFS and ReiserFS) along with the VFS in the Linux
2.6.27 kernel, confirming 312 true bugs. Table 1 shows the
results per bug category. We find that 86% of the dropped
unhandled errors correspond to the category of unsaved errors.
The most common unsaved error code is EIO, followed by
ENOSPC and ENOMEM. Close inspection reveals serious
inconsistencies in use of some functions’ return values. For
example, we find one function whose returned error code is
unsaved at 35 call sites, but saved at 17 others. In this particular
example, 9 out of the 35 bad calls are true bugs; the rest are
false positives. When we alerted developers, some suggested
they could use annotations to explicitly mark cases where error
codes are intentionally ignored.

Note that false positives correspond to cases in which the
developers and local expert judge that erros are safely over-
written, out of scope or unsaved. The claim that unhandled
errors are lost is true, and in this sense the analysis is providing
correct, precise information for the questions it was designed
to answer. Rubio-González et al. [25] describe these results in
greater detail, including a breakdown per file system.

4.2 Defective Error/Pointer Interactions
We identify 56 true bugs among 52 Linux file system imple-

mentations (including widely-used file systems such as ext3
and ReiserFS) and 4 drivers (SCSI, PCI, IDE, ATA) along with
the VFS and mm in the Linux 2.6.35.4 kernel. Table 2 shows
the results per bug category. We find that bad pointer derefer-
ences are the most common (64% of the true bugs). We find
that most bad pointer dereferences are due to dereferencing

Table 1: Dropped unhandled errors for subset of file systems

Bug Category True Bugs False Positives Total

Overwritten 25 44 69
Out of Scope 18 48 66
Unsaved 269 97 366

Total 312 189 501

Table 2: Defective error/pointer interactions

Bug Category True Bugs False Positives Total

Bad Dereference 36 5 41
Bad Arithmetic 16 1 17
Pointer Overwrite 4 34 38

Total 56 40 96

pointer variables without first checking them for errors. In
many cases there is a check for NULL, however the error check
is missing.

Most false positives (85%) correspond to overwrites and are
due to cloned code. In other words, a few false-positive reports
are generated multiple times when analyzing file systems sepa-
rately. The reports correspond to code copied among different
implementations. Because our tool does not automatically iden-
tify these “duplicated” reports, we count them multiple times,
hence the high number. Rubio-González and Liblit [24] discuss
the results in more detail.

Table 3: Number of file systems per system call that return undocumented errors. a:E2BIG, b:EACCES, c:EAGAIN,
d:EBADF, e:EBUSY, f:EEXIST, g:EFBIG, h:EINTR, i:EINVAL, j:EIO, k:EISDIR, l:EMFILE, m:EMLINK, n:ENFILE, o:ENODEV,
p:ENOENT, q:ENOMEM, r:ENOSPC, s:EMXIO, t:ERANGE, u:EROFS, v:ESRC, w:ETXTBSY, x:EXDEV.

Error Code

SysCall a b c d e f g h i j k l m n o p q r s t u v w x Total

chdir 0 - 0 - 0 0 0 1 1 - 0 0 0 0 0 - - 0 1 0 21 0 0 0 24
chown 1 - 2 - 0 4 3 4 11 - 0 1 0 1 2 - - 5 2 4 - 0 4 1 45
mkdir 1 - 3 1 1 - 1 3 11 21 0 1 7 1 2 - - - 2 2 - 0 2 1 60
read 0 1 - - 0 0 0 - - - - 0 0 0 2 20 21 0 0 0 0 0 0 0 44
rmdir 0 - 2 1 - 1 0 3 - 21 21 0 0 0 1 - - 2 1 0 - 0 0 0 53
write 0 1 - - 0 0 - - - - 0 0 0 0 2 20 2 - 0 0 0 1 0 0 26

Table 4: Analysis performance for a subset of file systems and
drivers when finding bad pointer dereferences and bad pointer
arithmetic. Sizes include 133 KLOC of shared VFS and mm
code.

File System KLOC Time Mem
(min:sec) (GB)

Coda 136 2:54 0.83
FAT 140 3:06 0.88
NTFS 162 4:12 1.37
PCI 191 3:24 1.00
ReiserFS 161 4:06 1.36
SCSI 703 11:00 2.42

4.3 Error Code Mismatches Between Code
and Documentation

We find the set of error codes that 42 Linux file-related sys-
tem calls return across 52 different file system implementations
and the VFS in the Linux 2.6.32.4 kernel. We compare these
error codes against version 2.39 of the Linux manual pages
for each of the 42 file-related system calls. We report 1,784
undocumented error-code instances affecting all file systems
and system calls examined.

Table 3 shows the results for a subset of system calls and
error codes. The table shows the number of file systems that
may return a given undocumented error code (columns) for
each analyzed system call (rows). For example, we find that 21
file systems may return the undocumented EIO error (column j)
for the system call mkdir. Note that table entries marked with
a hyphen represent documented error codes for the respective
system calls. For instance, the error code EACCES or permis-
sion denied (column b) is documented for the system call chdir.
Rubio-González and Liblit [23] discuss the results.

4.4 Performance
We use a dual 3.2 GHz Intel Pentium 4 processor workstation

with 3 GB RAM to run our experiments. As mentioned earlier,
we run our analyses on each file system implementation and
driver separately along with shared code (VFS and mm). We
apply important optimizations that allow our analyses to run in
a matter of minutes [23]. Table 4 shows running time and mem-
ory usage for a subset of file systems and drivers when running
the analysis that finds bad pointer dereferences and bad pointer
arithmetic. The table also includes the size (in thousands of
lines of code). Running times range from 2 minutes 54 seconds
to 11 minutes for this subset of modules. Memory usage ranges
from 0.83 to 2.42 GB.

5. RELATED WORK
Numerous proposals detect or monitor error propagation pat-

terns at run time, typically during controlled in-house testing
with fault-injection to elicit failures [4, 6, 7, 10–14, 26]. Work
by Guo et al. [9] on dynamic abstract type inference could
be used to distinguish error-carrying variables from ordinary
integers, but this approach also requires running on real (error-
inducing) inputs. In contrast to these dynamic techniques,
our approach offers the stronger assurances of static analysis,
which become especially important for critical software com-
ponents such as operating system kernels. Storage errors are
rare enough to be difficult to test dynamically, but can be catas-
trophic when they do occur. This is precisely the scenario in
which intensive static analysis is most suitable.

Gunawi et al. [8] highlight error code propagation bugs in
file systems as a special concern. Gunawi’s proposed Error
Detection and Propagation (EDP) analysis is essentially a type
inference over the file system’s call graph, which finds dropped
unhandled errors. Our approach uses a more precise analysis
framework that offers flow- and context-sensitivity, finding a
larger number of bugs and producing more detailed diagnostic
information.

The FiSC system of Yang et al. [27] uses software model
checking to check for a number of file-system-specific bugs.
Relative to our work, FiSC employs a richer (more domain-
specific) model of file system behavior, including properties
of on-disk representations. However, FiSC does not check for
the kinds of bugs we find and has been applied to only three of
Linux’s many file systems.

6. CONCLUSIONS
We have contributed to the Linux community by reporting

hundreds of error-handling bugs. Although we have focused on
Linux so far, this work is not specific to Linux file systems and
drivers but can also be applied to other applications that use the
return-code idiom. Our tool has been used by the NASA/JPL
Laboratory for Reliable Software to check code in the Mars Sci-
ence Laboratory, where it has found a critical unsaved error in
code used for space missions. Another example is the Mozilla
code base, which is written in C++, but uses the return-code
idiom extensively. We are currently developing a new LLVM-
based front end that will allow us to analyze this application
and many others.

Our ultimate goal is to use our analyses to automatically
extract error-handling specifications that describe how a system
detects and recovers from run-time errors. These specifications
could be used in many settings. We are particularly interested
in testing of error-handling code in large applications.

7. RESEARCH PHILOSOPHY
It is important for me to conduct challenging research that

not only has an impact for me, but for many other people as
well. That is what I like the most about my current research
work. I like the fact that widely-used applications can be made
more reliable by using our static program analyses. That is a
great way to give back!

My goal is to conduct high quality research. I have always
been encouraged to find my own research problems. This has
been challenging but also very beneficial. I have learned a lot in
the process and it has helped me to stay focused and motivated.
My research experience so far has been very rewarding and I
consider myself fortunate to work as a research assistant in a
research-oriented institution under my advisor’s supervision.

8. REFERENCES

[1] M. Bruntink, A. van Deursen, and T. Tourwé.
Discovering faults in idiom-based exception handling. In
L. J. Osterweil, H. D. Rombach, and M. L. Soffa, editors,
ICSE, pages 242–251. ACM, 2006.

[2] R. E. Bryant. Binary decision diagrams and beyond:
enabling technologies for formal verification. In R. L.
Rudell, editor, ICCAD, pages 236–243. IEEE Computer
Society, 1995.

[3] R. P. L. Buse and W. Weimer. Automatic documentation
inference for exceptions. In B. G. Ryder and A. Zeller,
editors, ISSTA, pages 273–282. ACM, 2008.

[4] G. Candea, M. Delgado, M. Chen, and A. Fox.
Automatic failure-path inference: A generic introspection
technique for Internet applications. In Proceedings of the
The Third IEEE Workshop on Internet Applications
(WIAPP ’03), pages 132–141, San Jose, California, June
2003. IEEE.

[5] F. Cristian. Exception handling. In Dependability of
Resilient Computers, pages 68–97, 1989.

[6] C. A. Flanagan and M. Burrows. System and method for
dynamically detecting unchecked error condition values
in computer programs. United States Patent #6,378,081
B1, Apr. 2002.

[7] T. Goradia. Dynamic impact analysis: A cost-effective
technique to enforce error-propagation. In ISSTA, pages
171–181, 1993.

[8] H. S. Gunawi, C. Rubio-González, A. C.
Arpaci-Dusseau, R. H. Arpaci-Dusseau, and B. Liblit.
EIO: Error handling is occasionally correct. In 6th
USENIX Conference on File and Storage Technologies
(FAST ’08), San Jose, California, Feb. 2008.

[9] P. J. Guo, J. H. Perkins, S. McCamant, and M. D. Ernst.
Dynamic inference of abstract types. In L. L. Pollock and
M. Pezzè, editors, ISSTA, pages 255–265. ACM, 2006.

[10] M. Hiller, A. Jhumka, and N. Suri. An approach for
analysing the propagation of data errors in software. In
DSN, pages 161–172. IEEE Computer Society, 2001.

[11] M. Hiller, A. Jhumka, and N. Suri. Propane: an
environment for examining the propagation of errors in
software. In ISSTA, pages 81–85, 2002.

[12] M. Hiller, A. Jhumka, and N. Suri. Epic: Profiling the
propagation and effect of data errors in software. IEEE
Trans. Computers, 53(5):512–530, 2004.

[13] A. Jhumka, M. Hiller, and N. Suri. Assessing
inter-modular error propagation in distributed software.
In SRDS, pages 152–161. IEEE Computer Society, 2001.

[14] A. Johansson and N. Suri. Error propagation profiling of
operating systems. In DSN, pages 86–95. IEEE
Computer Society, 2005.

[15] N. Kidd, T. Reps, and A. Lal. WALi: A C++ library for
weighted pushdown systems. http://www.cs.
wisc.edu/wpis/wpds/download.php, 2008.

[16] A. Lal, N. Kidd, T. W. Reps, and T. Touili. Abstract error
projection. In H. R. Nielson and G. Filé, editors, SAS,
volume 4634 of Lecture Notes in Computer Science,
pages 200–217. Springer, 2007.

[17] J. Lind-Nielsen. BuDDy - A Binary Decision Diagram
Package. http://sourceforge.net/projects/buddy, 2004.

[18] M. Lippert and C. V. Lopes. A study on exception
detection and handling using aspect-oriented
programming. In ICSE, pages 418–427, 2000.

[19] R. Miller and A. Tripathi. Issues with exception handling
in object-oriented systems. In In Object-Oriented
Programming, 11th European Conference (ECOOP,
pages 85–103. Springer-Verlag, 1997.

[20] G. C. Necula, S. McPeak, S. P. Rahul, and W. Weimer.
CIL: Intermediate language and tools for analysis and
transformation of C programs. In R. N. Horspool, editor,
CC, volume 2304 of Lecture Notes in Computer Science,
pages 213–228. Springer, 2002.

[21] T. W. Reps, S. Schwoon, S. Jha, and D. Melski.
Weighted pushdown systems and their application to
interprocedural dataflow analysis. Sci. Comput.
Program., 58(1-2):206–263, 2005.

[22] M. P. Robillard and G. C. Murphy. Regaining control of
exception handling. Technical report, University of
British Columbia, Vancouver, BC, Canada, 1999.

[23] C. Rubio-González and B. Liblit. Expect the unexpected:
error code mismatches between documentation and the
real world. In S. Lerner and A. Rountev, editors, PASTE,
pages 73–80. ACM, 2010.

[24] C. Rubio-González and B. Liblit. Defective error/pointer
interactions in the linux kernel. In F. Tip, editor,
International Symposium on Software Testing and
Analysis, Toronto, Ontario, Canada, July 17–21 2011. To
appear.

[25] C. Rubio-González, H. S. Gunawi, B. Liblit, R. H.
Arpaci-Dusseau, and A. C. Arpaci-Dusseau. Error
propagation analysis for file systems. In M. Hind and
A. Diwan, editors, PLDI, pages 270–280. ACM, 2009.

[26] K. G. Shin and T.-H. Lin. Modeling and measurement of
error propagation in a multimodule computing system.
IEEE Trans. Computers, 37(9):1053–1066, 1988.

[27] J. Yang, P. Twohey, D. R. Engler, and M. Musuvathi.
Using model checking to find serious file system errors.
ACM Trans. Comput. Syst., 24(4):393–423, 2006.

http://www.cs.wisc.edu/wpis/wpds/download.php
http://www.cs.wisc.edu/wpis/wpds/download.php

	Introduction
	Error-Handling Bugs
	Dropped Unhandled Errors
	Defective Error/Pointer Interactions
	Error Code Mismatches Between Code and Documentation

	Approach
	Error Propagation Analysis
	Finding Error-Handling Bugs
	Sample Bug Report

	Experimental Evaluation
	Dropped Unhandled Errors
	Defective Error/Pointer Interactions
	Error Code Mismatches Between Code and Documentation
	Performance

	Related Work
	Conclusions
	Research Philosophy
	References

