
ACTIONSREMAKER: Reproducing GITHUB ACTIONS

Hao-Nan Zhu, Kevin Z. Guan, Robert M. Furth and Cindy Rubio-González
University of California, Davis

United States of America

{hnzhu, zeyguan, rmfurth, crubio}@ucdavis.edu

Abstract—Mining Continuous Integration and Continuous
Delivery (CI/CD) has enabled new research opportunities for
the software engineering (SE) research community. However,
it remains a challenge to reproduce CI/CD build processes,
which is crucial for several areas of research within SE such
as fault localization and repair. In this paper, we present
ACTIONSREMAKER, a reproducer for GITHUB ACTIONS builds.
We describe the challenges on reproducing GITHUB ACTIONS
builds and the design of ACTIONSREMAKER. Evaluation of
ACTIONSREMAKER demonstrates its ability to reproduce fail-
pass pairs: of 180 pairs from 67 repositories, 130 (72.2%) from
43 repositories are reproducible. We also discuss reasons for
unreproducibility. ACTIONSREMAKER is publicly available at
https://github.com/bugswarm/actions-remaker, and a demo of the
tool can be found at https://youtu.be/flblSqoxeAk.

Index Terms—CI/CD, GitHub Actions, software mining, soft-
ware build, software reproducibility

I. INTRODUCTION

Continuous Integration (CI) and Continuous Delivery (CD)

play important roles in modern software development. They

allow developers to configure and deploy a process to be au-

tomatically triggered by designated events (e.g., git push).

In most cases, the CI/CD process will involve setting up

the environment, building the code, and/or running tests.

There are various popular CI/CD service providers, including

TRAVIS-CI [6], GITHUB ACTIONS [2], and JENKINS [3].

The wide use of CI/CD has opened opportunities for the

software engineering (SE) research community. Specifically,

it has given researchers access to the build and testing pro-

cesses of software projects at a large scale. Several research

areas within SE, such as fault localization and automated

program repair, are evaluated on large sets of successful and

failed CI/CD builds. Furthermore, previous work has leveraged

CI/CD to mine large scale code repositories and build software

defect datasets [12, 15], to predict build outcomes [9, 10], or

to automatically repair build scripts [11, 14].

To realize the full value of CI/CD from a research perspec-

tive, it is essential to be able to reproduce the build processes

at scale whenever needed. Successful reproduction means the

ability to run exactly the same steps in exactly the same en-

vironments and obtaining exactly the same outcomes as when

the process was first completed (e.g., the code was pushed to

GITHUB). Unfortunately, the process of reproducing builds is

hampered by many challenges such as the unavailability of

software dependencies [14, 15]. Previous work [15] proposed

a methodology to mine and reproduce builds of GITHUB

projects that use TRAVIS-CI by using TRAVIS-CI DOCKER

images to recreate the exact build environments and TRAVIS-

BUILD [5] to automatically create build scripts. While having

reproduced thousands of builds, the success rate was extremely

low. Most recently, reproducing TRAVIS-CI builds has become

even more challenging: following a change in business model,

TRAVIS-CI historical logs for a majority of projects are no

longer available, and DOCKER images capturing environments

are no longer publicly accessible.

As mentioned earlier, other CI/CD services have gained

popularity in the past few years. Among the existing CI/CD

service providers, GITHUB ACTIONS [2] is one of the most

popular due to its deep integration with GITHUB, which is

the most popular software project hosting provider with more

than 350 million code repositories [1]. GITHUB ACTIONS uses

workflow runs to refer to build processes. However, to repro-

duce workflow runs for GITHUB ACTIONS, there are several

challenges. First, GITHUB ACTIONS by default uses Azure

VMs to host workflow runs so it is not easy to reconstruct the

exact runtime environment while ensuring portability. Second,

unlike TRAVIS-CI, GITHUB ACTIONS does not provide an

official converter from workflow files to build scripts, thus

a parsing process is required to run a workflow “offline.” To

address these challenges, it requires (1) proper containerization

techniques to reconstruct the runtime environment of a build,

and (2) a sophisticated parser to convert the non-executable

workflow file to executable build scripts.

In this paper, we demonstrate ACTIONSREMAKER, a re-

producer for GITHUB ACTIONS workflows. Given a desired

workflow job to reproduce, ACTIONSREMAKER will first

reconstruct the original runtime environment by building

DOCKER containers with the information retrieved from the

original workflow job. Then GITHUBBUILDER translates the

workflow file into a build script. Finally, ACTIONSREMAKER

packages the software repository and build script along with

the required environment into a DOCKER image. To the best of

our knowledge, ACTIONSREMAKER is the first tool designed

to reproduce existing GITHUB ACTIONS workflow runs.

We evaluate ACTIONSREMAKER by examining its capa-

bility to reproduce fail-pass build pairs. Fail-pass pairs are

consecutive builds where the first fails and the second passes,

and have been used to construct software defect datasets

such as BUGSWARM [15]. BUGSWARM is a software defect

dataset mined from TRAVIS-CI builds, of which workflows are

defined as .yml files that can be translated to shell scripts

by the official converter provided by TRAVIS-CI. We reuse

the pipeline from BUGSWARM to mine fail-pass pairs from

11

2023 IEEE/ACM 45th International Conference on Software Engineering: Companion Proceedings (ICSE-Companion)

979-8-3503-2263-7/23/$31.00 ©2023 IEEE
DOI 10.1109/ICSE-Companion58688.2023.00015

Fig. 1. Steps of ACTIONSREMAKER

GITHUB projects. Among 180 fail-pass pairs mined from

67 projects, ACTIONSREMAKER successfully reproduced 130

(72.2%) of them, which is dramatically higher than the re-

producibility reported by BUGSWARM (5.56%) when repro-

ducing TRAVIS-CI builds. We also study and categorize the

root causes of unreproducible pairs. The rest of the paper

presents background on GITHUB ACTIONS, the approach of

ACTIONSREMAKER, and its evaluation.

II. BACKGROUND: GITHUB ACTIONS

GITHUB ACTIONS is a CI/CD service provided by

GITHUB. All configurations and steps are defined in .yml
formatted files in the .github/workflows directory of

the repository, which are referred as workflow files. Each

of workflows will contain events, jobs, steps, and runners

configured by developers. Events are specific activities that

trigger a workflow run, such as a push to a branch or a pull
request. In a workflow run, there could be multiple jobs for

different environments. Each job consists of a set of steps to

be executed. Steps are the smallest portable unit in GITHUB

ACTIONS. They can be either predefined actions or custom
actions from GITHUB or developers. Runners are the virtual

machines where jobs are executed. Developers can use matrix

parameters to define a set of environments by combinations

of different operating systems, programming languages, and

compiler versions for runners. A workflow run triggered by an

event executes all jobs defined in the workflow file. Finally,

each job executes all steps defined in the job in a runner. The

whole process is referred as a build.

III. APPROACH

In this section, we describe ACTIONSREMAKER’s approach

to reproduce GITHUB ACTIONS builds. As shown in Figure 1,

ACTIONSREMAKER takes as input the desired GITHUB AC-

TIONS job, and outputs a DOCKER image in which the job can

be easily reproduced. ACTIONSREMAKER first reconstructs

the environment based on information retrieved from the origi-

nal job. Then, GITHUBBUILDER generates a build script based

on the workflow file. Finally, with the original environment,

ACTIONSREMAKER packages the build script and software

repository into a DOCKER image. We discuss limitations of

ACTIONSREMAKER at the end of the section.

A. Environment Reconstruction

Given the job ID, ACTIONSREMAKER can retrieve the envi-

ronmental information via the GITHUB API to reconstruct the

original runtime environment. The reconstructed environment

includes the operating system, software repository, predefined

actions, and the original logs of the job.

For GITHUB ACTIONS, operating systems are specified

in the workflow file with the runs-on option. Based on

this value, ACTIONSREMAKER will determine the original

operating system to construct with. However, if the users

specify ubuntu-latest as the operating system version,

ACTIONSREMAKER will parse the original log to get the

correct operating system version because ubuntu-latest
could vary based on the time when the original job was

triggered. Next, ACTIONSREMAKER downloads the software

repository with the exact revision that corresponds to the job.

The GITHUB ACTIONS official runner requires developers to

use the actions/checkout action at runtime to set up

the repository. For ACTIONSREMAKER, it retrieves the project

source code by cloning the project and runs git reset to

reset the project back to the target commit. Sometimes the

target commit is not in the git history thus it is not resettable.

In such cases ACTIONSREMAKER downloads the zip archive

of the commit directly from GITHUB. ACTIONSREMAKER

also retrieves the source code for all predefined actions based

on the action name and version listed in the job’s workflow

file. Moreover, since the goal of ACTIONSREMAKER is to re-

produce existing workflow runs, it also downloads the original

build logs from GITHUB API for future validation.

B. Build Script Generation

GITHUBBUILDER, a core component of ACTIONSRE-

MAKER, automatically generates shell scripts from the work-

flow file for running a GITHUB ACTIONS job. GITHUB-

BUILDER retrieves additional workflow metadata like actor
(the user that triggered the workflow run) and head ref
(the source branch of the pull request) via the GITHUB API.

It also retrieves runtime information like global environment

variables, default shell, and working directory from the work-

flow file. If a job was triggered by a pull request (PR), the

PR number is crucial for job reproduction since oftentimes

the job will require information such as the title and head

repository name of the PR. However, the PR number is not

accessible from the API. To address this, ACTIONSREMAKER

12

parses the original build log to extract the PR number, then

uses the GITHUB API to fetch all PR-related information.

GITHUB ACTIONS workflow files contain a list of steps

for a job. A step could be either a custom action (specified

using the “run” field) or a predefined action (specified using

the “uses” field). Regardless of action type, GITHUBBUILDER

will extract metadata such as the step name, step number, the

conditions to run the step, etc. For custom actions, GITHUB-

BUILDER will save the user-defined commands into a script

file, then add a shell command that executes this script into a

main build script. For predefined actions, GITHUBBUILDER

supports JavaScript and composite actions. To reproduce those,

GITHUBBUILDER first downloads the source code of the

predefined action and its metadata file based on the version

listed in the workflow file. Then, to reproduce JavaScript

predefined actions, it will use Node.js to run the main program

specified in the action metadata file. Just like GITHUB AC-

TIONS, GITHUBBUILDER also passes arguments to JavaScript

programs using a list of environment variable. For example, the

actions/setup-java action requires users to specify the

java-version option. So if we have java-version:
17, it will set the INPUT_JAVA-VERSION variable to 17.

A composite action is similar to the workflow file; it contains

a list of custom and predefined action steps, which can be

grouped. To implement the composite action, ACTIONSRE-

MAKER recursively generate the build scripts for this list of

steps, similar to how it generates build commands from the

steps list in the workflow file.

When generating build scripts, GITHUBBUILDER needs

to handle contexts and expressions used in workflow files.

Contexts are the collection of variables containing informa-

tion about the workflow run, steps, environment variables,

runner, etc., and expressions are the combinations of literal

values, contexts, operators, and functions. For example, the

startsWith(searchString, searchValue) func-

tion will return true if the searchString starts with search-

Value. They are generally used in the conditional statements to

control step execution. GITHUBBUILDER will replace static

contexts (constant variables such as github.repository)

with strings and replace dynamic contexts (non-constant vari-

ables such as steps.<step_id>.outcome) with environ-

ment variables. GITHUBBUILDER then converts expressions

into lists of arguments to evaluate them at runtime.

C. Image Packaging

The final step is to build the DOCKER image. In this

step, ACTIONSREMAKER generates a DOCKER file to specify

a list of instructions for the image-building process. Some

instructions include: adding a new user with proper permis-

sion, changing file permissions, adding the source code of

the repository and pre-defined actions, and adding the build

scripts. We also set the base image of the DOCKER file based

on the job’s operating system. Currently, ACTIONSREMAKER

supports base images ubuntu-18.04, ubuntu-20.04,

and ubuntu-22.04.

D. Limitations of ACTIONSREMAKER

ACTIONSREMAKER does not support certain types of ac-

tions: (1) actions that invoke DOCKER are not supported since

the runtime environment is constructed within a DOCKER con-

tainer and running DOCKER in DOCKER will lead to security

risks, (2) actions that require secret context are not supported

since secrets are private and not accessible to the public, (3)

actions/checkout actions with specified submodules is

not supported only when the job is not resettable, since the

downloaded zip archive does not contain the .git directory.

IV. EVALUATION

In this section, we evaluate ACTIONSREMAKER by measur-

ing its capability to reproduce fail-pass pairs from open-source

projects, i.e., we include real-world failures. We answer the

following research questions:

RQ1 How effective is ACTIONSREMAKER at reproducing

real-world builds?

RQ2 What are the root causes of unreproducible builds?

A. Experimental Setup

We reuse BUGSWARM’s pipeline for mining fail-pass pairs,

which we extended to support GITHUB ACTIONS. In the case

of GITHUB ACTIONS, fail-pass pairs are two consecutive job

runs where (1) the first job comes from a failed build and the

second comes from a passed build, (2) the two jobs are gen-

erated by the same GITHUB ACTIONS workflow file and have

identical configurations and matrix parameters, and (3) the

commits corresponding to each job are from the same branch.

To verify reproducibility, we slightly modify BUGSWARM’s

log analyzer to make it compatible with GITHUB ACTIONS

log formats, so it can analyze and compare the reproduced log

against the original log.

B. RQ1: Effectiveness at Reproducing Real-World Builds

We use two sets of real-world fail-pass pairs to create our

benchmark. The first set consists of manually-selected fail-

pass pairs that make use of important and popular features

of GITHUB ACTIONS. For instance, we chose pairs from the

repository Netflix/spectator because its jobs dynam-

ically modify environment variables when they run, and we

chose pairs from junit-team/junit5 because they use

composite actions. Such features are expected to be handled

by ACTIONSREMAKER. The manual selection yielded 87 fail-

pass pairs from 11 repositories.

The second set is generated by mining GITHUB repositories

with the adapted BUGSWARM pipeline. For a repository to

be considered, it should (1) use GITHUB ACTIONS, (2) be

written in Java, and (3) have at least 50 stars on GITHUB.1

The above criteria yielded a set of over 3,600 repositories. To

keep the benchmark at a practical size, we selected 75 of these

repositories to be included in the benchmark. Then, we filtered

out the pairs with inaccessible original logs, pairs with jobs

1ACTIONSREMAKER is language agnostic, but we focused on Java because
it is a popular language, and is supported by the BUGSWARM analyzer.

13

TABLE I
FAIL-PASS PAIR COUNTS FOR EACH TYPE OF UNREPRODUCIBLE PAIR

Category # Failure Reason Number Percentage

1 Test Mismatch 23 12.8%
2 Missing Requirement 10 5.6%
3 Dependency Error 8 4.4%
4 Tool Failure 6 3.3%
5 Other 3 1.7%

Total 50 27.8%

that run on unsupported operating systems (Section III-C), and

pairs with unsupported actions (Section III-D). This excluded

19 out of 75 repositories that have no suitable pairs to mine.

Since we wanted to collect a diverse set of pairs while keeping

the size of the benchmark manageable, we only kept the

three most recent pairs from repositories that had more than 3

suitable pairs, and all pairs from repositories with more than

one but less than 3 pairs. The process above generated a set of

93 fail-pass pairs from 56 repositories. Combining the two sets

yields a benchmark of 180 fail-pass pairs from 67 repositories.

We provide each fail-pass pair in the benchmark as input

to ACTIONSREMAKER, get the resulting DOCKER image,

run the generated build script in the DOCKER container, and

collect build outcomes. Then we use the adapted BUGSWARM

analyzer to extract the number of tests run, passed, failed, and

skipped, as well as the name of failed tests. We repeat the

process for the original logs and compare them against the

reproduced outcomes. A fail-pass pair is reproducible only if

the outcomes from both jobs match their original counterparts.

Out of the 180 fail-pass pairs in the benchmark, 130 (72.2%)

are reproducible. Out of the 67 repositories represented in our

benchmark, there were 39 with all pairs reproducible, and 43

with at least one pair reproducible.

C. RQ2: Root Causes of Unreproducible Builds

In total, 50 (27.8%) out of the 180 fail-pass pairs were not

reproducible. Our manual inspection identified four reasons

for unreproducibility, which are summarized in Table I.

a) Test Mismatches: 23 pairs failed to reproduce because

their number of failed and passed tests did not match those

listed in the original logs. The main cause for this is test flaki-

ness. Flaky tests are tests that fail in some runs but pass in oth-

ers. For example, the test testSingleValueRandomJoin
from the Apache Lucene project failed in the original GITHUB

ACTIONS workflow run but ACTIONSREMAKER does not

always trigger the expected failure. While the source of

flakiness can usually be attributed to non-determinism, it is

often difficult to ascertain the exact root cause.

b) Missing Requirements: 10 pairs failed to reproduce

due to missing system requirements such as MySQL and

the Android SDK. For purposes of practicality, our base

images only contain a subset of the software installed on

GITHUB ACTIONS’s official virtual machines, thus jobs using

not included software will not be reproduced correctly.

c) Dependency Errors: Some jobs rely on external ser-

vices or data that are outside of our control. A total of 8

pairs failed to reproduce due to the inability to access Maven

dependencies that are no longer available and external APIs.
d) Tool Failures: Sometimes ACTIONSREMAKER fails

to package a job properly; for instance a git reset might

fail unexpectedly. A total of 6 pairs failed due to this reason.

There were also 3 unreproducible fail-pass pairs that did not

fit neatly into any one of above categories. The unreproducible

jobs in those pairs failed due to, respectively, the job not being

run in a clean Git repository, a Maven plugin failing for unclear

reasons, and a syntax error in a predefined action.

V. RELATED WORK

Mining CI Services for Dataset Creation. Among popular CI

services, TRAVIS-CI in particular has been mined extensively

by the SE community for different purposes. Related to

dataset creation, TRAVISTORRENT [7] mines TRAVIS-CI

to create a large-scale dataset of TRAVIS-CI builds that

allows to easily access information from the build logs as

well as trigger commits and aggregated CI project data.

BUGSWARM [15] and BEARS [12] mine TRAVIS-CI to

automatically create software defect datasets. To the best of

our knowledge, ACTIONSREMAKER is the first tool that can

be integrated into a pipeline that mines GITHUB ACTIONS to

automate the process of reproducing builds.

Reproducing and Fixing Builds. Prior work has studied the

reproducibility of builds on DOCKERFILE [8], snapshots of

Java projects [13], or Python projects [14]. In the scenario

of CI services, BUGSWARM [15] reproduced TRAVIS-CI

builds with a reported 5.56% success rate. Others have also

proposed approaches to fix broken builds [9, 11, 16]. Unlike

the above, this is the first study on the reproducibility of

GITHUB ACTIONS builds.

Triggering GITHUB ACTIONS. Open source work [4] de-

veloped by the community provides functionality to trigger

GITHUB ACTIONS workflow runs locally. However, the ap-

proach is designed to run a job that has not been triggered

yet, not for reproducing historical workflow jobs. Unlike

the above, ACTIONSREMAKER is the first tool targeting the

reproduction of existing workflow jobs, and delivering a

reproducible DOCKER image for future use.

VI. CONCLUSION

We present ACTIONSREMAKER, a tool for reproducing

GITHUB ACTIONS workflow runs. ACTIONSREMAKER takes

as input the desired workflow job to reproduce and outputs a

DOCKER image with the exact environment, software repos-

itory and build script. Our evaluation showed that ACTION-

SREMAKER can reproduce 130 (72.2%) fail-pass build pairs

from 43 out of 67 distinct open-source repositories.

ACKNOWLEDGMENT

This work was supported by the National Science Founda-

tion under award CNS-2016735.

14

REFERENCES

[1] GitHub Search for Number of Repositories. https://github.com/
search?type=repositories, 2022.

[2] GitHub Actions. https://docs.github.com/en/actions, 2022.
[3] Jenkins. https://www.jenkins.io/, 2022.
[4] nektos/act. https://github.com/nektos/act, 2022.
[5] Travis Build. https://github.com/travis-ci/travis-build, 2022.
[6] Travis CI. https://www.travis-ci.com/, 2022.
[7] M. Beller, G. Gousios, and A. Zaidman. Travistorrent: synthe-

sizing travis CI and github for full-stack research on continuous
integration. In MSR, pages 447–450. IEEE Computer Society,
2017.

[8] J. Cito, G. Schermann, J. E. Wittern, P. Leitner, S. Zumberi,
and H. C. Gall. An empirical analysis of the docker container
ecosystem on github. In MSR, pages 323–333. IEEE Computer
Society, 2017.

[9] F. Hassan. Tackling build failures in continuous integration. In
ASE, pages 1242–1245. IEEE, 2019.

[10] F. Hassan and X. Wang. Change-aware build prediction model
for stall avoidance in continuous integration. In ESEM, pages

157–162. IEEE Computer Society, 2017.
[11] F. Hassan and X. Wang. Hirebuild: an automatic approach to

history-driven repair of build scripts. In ICSE, pages 1078–
1089. ACM, 2018.

[12] F. Madeiral, S. Urli, M. de Almeida Maia, and M. Monper-
rus. BEARS: an extensible java bug benchmark for automatic
program repair studies. In SANER, pages 468–478. IEEE, 2019.

[13] M. Maes-Bermejo, M. Gallego, F. Gortázar, G. Robles, and
J. M. González-Barahona. Revisiting the building of past
snapshots - a replication and reproduction study. Empir. Softw.
Eng., 27(3):65, 2022.

[14] S. Mukherjee, A. Almanza, and C. Rubio-González. Fixing
dependency errors for python build reproducibility. In ISSTA,
pages 439–451. ACM, 2021.

[15] D. A. Tomassi, N. Dmeiri, Y. Wang, A. Bhowmick, Y. Liu, P. T.
Devanbu, B. Vasilescu, and C. Rubio-González. Bugswarm:
mining and continuously growing a dataset of reproducible
failures and fixes. In ICSE, pages 339–349. IEEE / ACM, 2019.

[16] H.-N. Zhu and C. Rubio-González. On the reproducibility of
software defect datasets. In ICSE. IEEE, 2023.

15

