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ABSTRACT

Numerical libraries constitute the building blocks for software appli-

cations that perform numerical calculations. Thus, it is paramount

that such libraries provide accurate and consistent results. To that

end, this paper addresses the problem of finding discrepancies be-

tween synonymous functions in different numerical libraries as a

means of identifying incorrect behavior. Our approach automati-

cally finds such synonymous functions, synthesizes testing drivers,

and executes differential tests to discover meaningful discrepan-

cies across numerical libraries. We implement our approach in a

tool named FPDiff, and provide an evaluation on four popular nu-

merical libraries: GNU Scientific Library (GSL), SciPy, mpmath, and

jmat. FPDiff finds a total of 126 equivalence classes with a 95.8%

precision and 79.0% recall, and discovers 655 instances in which

an input produces a set of disagreeing outputs between function

synonyms, 150 of which we found to represent 125 unique bugs.

We have reported all bugs to library maintainers; so far, 30 bugs

have been fixed, 9 have been found to be previously known, and 25

more have been acknowledged by developers.
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1 INTRODUCTION

Science and industry place their faith in numerical software to give

accurate and consistent results. Numerical libraries make up the

building blocks for such software, offering collections of discrete

numerical algorithms that implement continuous analytical mathe-

matical functions. In an effort to establish a trusted foundation from

which to build powerful and useful tools, developers of numerical
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libraries aim to offer a certain level of correctness and robustness in

their algorithms. Specifically, a discrete numerical algorithm should

not diverge from the continuous analytical function it implements

for its given domain.

Extensive testing is necessary for any software that aims to be

correct and robust; in all application domains, software testing

is often complicated by a deficit of reliable test oracles and im-

mense domains of possible inputs. Testing of numerical software

in particular presents additional difficulties: there is a lack of stan-

dards for dealing with inevitable numerical errors, and the IEEE 754

Standard [1] for floating-point representations of real numbers in-

herently introduces imprecision. As a result, bugs are commonplace

even in mature and widely-used pieces of numerical software [19],

thus motivating the exploration of analysis and testing techniques.

With regard to the missing-oracle problem in the context of

floating-point functions, a common technique involves taking the

original function, F , allocating more bits per numerical variable to

yield a "higher-precision" function F ∗, and treating the output of

F ∗ as the ground truth [9, 15, 16, 20, 42, 48, 49]. Such works rely on

the assumption that F ∗ will have fewer points of divergence from

the continuous analytical function, call it Fexact, and can thus be

trusted as an approximation of Fexact. However, work byWang et al.

[44] regarding precision-specific operations illustrates the conditions

under which this assumption fails, resulting in F ∗ potentially di-

verging even further from Fexact. Additionally, the execution of

F ∗ can become prohibitively expensive: Benz et al. [9] report an

increase in the time-to-complete that ranges from a factor of 167×

to 1016× slowdown. Even in a situation in which F ∗ satisfies the

above assumption, any points of divergence inherent to the algo-

rithm itself will be present in both F and F ∗. Comparing against

the same discrete numerical algorithm, albeit at a higher precision,

inherently limits the scope of discoverable bugs.

Consequently, this paper proposes a framework for auto-

mated and systematic differential testing as an orthogonal

approach to complement the existing state-of-the-art. Our

approach does not require a ground truth, and therefore, has a

chance to uncover a larger variety of bugs. Rather than attempting

to compare some numerical function F1 to Fexact or some approx-

imation thereof, our approach compares n numerical functions,

F1, ..., Fn , that all implement Fexact. We refer to such functions as

function synonyms. Points of divergence found among these func-

tion synonyms and the discrepancies they cause are then reported.

While differential testing is a common technique that has been

applied tomany domains (e.g., [13, 14, 18, 31, 34, 40, 46]) such testing

has not been systematically applied in the context of numerical

software. In order to effectively implement differential testing in

this domain and report meaningful points of divergence, we have

identified three key challenges that must be addressed:
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Challenge 1: Automaticallyfinding function synonyms. De-

termining which functions implement the same continuous ana-

lytical mathematical function is non-trivial. Documentation can

be unreliable and function names can also be misleading, e.g., the

sinc function from mpmath is not a function synonym for the sinc

functions from either GSL or SciPy, though mpmath’s rf is in fact

a function synonym for GSL’s poch. Static approaches to discover-

ing such synonyms in other domains [11, 17, 35, 36] suffer from a

lack of parallel corpora or are based on calling context which, for

numerical functions, can be widely-varied or even non-existent if

being used for one-off calculations. This domain therefore calls for

a dynamic approach.

Challenge 2: Extracting signatures and synthesizing dri-

vers. Both finding function synonyms and testing them requires

synthesizing drivers to evaluate such functions. Specifically, func-

tion signatures must be automatically extracted and each function

must be wrapped in an executable driver. While the code for li-

braries written in statically-typed languages can be easily parsed

to gather the information required for synthesizing such a driver,

libraries written in dynamically-typed languages present unique

difficulties in determining the types of function arguments. Again,

documentation can be lacking and non-uniform; an alternative

approach is required.

Challenge 3: Identifyingmeaningful numerical discrepan-

cies. Because of the inherent imprecision of floating-point repre-

sentations of real numbers, it is often the case that evaluating a pair

of function synonyms over the same input will result in two outputs

that, while not exactly equivalent, are not indicative of any buggy

behavior. How do we know whether or not to call two outputs

"equivalent"? Furthermore, the lack of overarching standards with

respect to error-handling means that different libraries can produce

different outputs when encountering the same erroneous compu-

tation. Such discrepancies often stem from deliberate developer

choices and are not bugs. To better understand the reported points

of divergence, a methodology to identify meaningful discrepancies

that represent reportable bugs must be developed.

In this paper, we describe and implement FPDiff, a tool for find-

ing discrepancies between numerical libraries that addresses the

above challenges. Given the source code of two or more libraries,

FPDiff starts by automatically extracting function signatures (Sec-

tion 3.1.1) that fit our testing criteria (Section 2.3). To infer parame-

ter types for functions from dynamically-typed libraries, FPDiff

leverages developer-written tests. Specifically, FPDiff examines

the Abstract Syntax Tree (AST) of test programs to infer argument

types for each function call. These extracted function signatures

are then used to automatically synthesize drivers to execute the

functions (Section 3.1.2). When only partial type information is

available, the space of possible parameter types is explored by gen-

erating multiple drivers, each with a unique configuration of data

types.

FPDiff then performs a classification step using the automatically-

created drivers to evaluate each function over a set of elementary

inputs that are designed to result in well-defined behavior (Sec-

tion 3.2). Functions whose outputs consistently fall within the

same E-neighborhood are determined to be function synonyms

and placed in the same equivalence class.

This is followed by differential testing (Section 3.3) in which

FPDiff executes the drivers of function synonyms in each equiva-

lence class on a diverse set of adversarial inputs designed to trigger

divergence. Our trials include inputs that are manually crafted by

developers, those that are found via binary guided random testing

over a subset of the domain to find inputs that maximize inaccura-

cies in the output, and a set of inputs containing special values that

are defined in the IEEE 754 Standard. The outputs across libraries

are then compared to identify the points of divergence between

function synonyms.

Finally, FPDiff analyzes and reports numerical discrepancies

(Section 3.3.2). Each of the resulting discrepancies is placed into

one of six categories that are defined in Table 1. We developed

this categorization based on our observations of the discrepancies

generated by FPDiff, their characteristics, and their likelihood of

representing buggy behavior. Finally, a reduction of the set of dis-

crepancies is automatically performed in order to facilitate manual

inspection for bugs.

We perform an experimental evaluation over four numerical

libraries: The GNU Scientific Library (GSL) [24] written in C, the

JavaScript library jmat [43], and the Python libraries mpmath [26]

and SciPy [27]. All of these libraries were chosen because they

are open source, have overlapping functionality, and are widely

used in practice. FPDiff finds 655 unique discrepancies between

these libraries and, of the reduced set of 327 discrepancies, we

found 150 that represented 125 unique bugs. We have reported

all bugs to library maintainers; so far, 30 bugs have been fixed, 9

have been found to be previously known, and 25 more have been

acknowledged by developers.

This paper makes the following contributions:

• We describe and implement FPDiff, a tool for finding dis-

crepancies between numerical libraries (Section 3).

• We propose a categorization of numerical discrepancies

found across numerical libraries (Section 3.3.2).

• Wepresent an evaluation on four popular numerical libraries:

GSL, mpmath, SciPy, and jmat that finds a total of 655 unique

discrepancies, 150 of which represent 125 bugs (Section 4).

The rest of this paper is organized as follows: Section 2 presents

a motivating example, preliminary definitions, and describes the

scope of our approach. Section 3 details the technical approach to

each of the components that make up FPDiff and Section 4 presents

an experimental evaluation for each. We discuss related work in

Section 5, and conclude in Section 6.

2 PRELIMINARIES

2.1 Illustrative Example

Reasoning about what is the ground truth when it comes to non-

trivial floating-point computations is difficult. Short of deriving an

analytical solution ourselves or consulting tables of analytically-

derived results, true oracles are scarce. Checking against another

function that claims to perform the same calculation is a possible

strategy to investigate a suspicious result; such output comparisons

illustrating unexpected or incorrect behavior are commonly found

in bug reports related to numerical functions.
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As a motivating example, consider Tricomi’s confluent hypergeo-

metric function, which provides a solution to Kummer’s differential

equation and has wide practical applications from pricing stock

options [10] to calculating electron velocity in high-frequency gas

discharge [32]. Using version 1.3.1 of the numerical library SciPy

to compute the value of this function for the input values 0.0001,

1.0, and 0.0001, we see the following:

>>> from scipy import special

>>> special.hyperu (0.0001 , 1.0, 0.0001)

-4806275004931.538

How can we determine the correctness of this result? Reading

through some documentation and finding a function synonym

of hyperu in version 1.0.0 of the mpmath library, we can attempt

the same calculation, yielding a surprising discrepancy (albeit in

mpmath’s own mpf data type):

>>> import mpmath

>>> mpmath.hyperu (0.0001 , 1.0, 0.0001)

mpf('1.0009210608660066 ')

Another comparison against the implementation of the Tricomi

function found in version 2.6 of GSL returns a result that agrees

with mpmath. Furthermore, SciPy’s documentation for this hyper-

geometric function provides no information regarding the domain

of the inputs that they do or do not handle. All of this serves to

indicate a likely bug in the SciPy library.

Library users often find such bugs by chance. A previous study

[19] showed that indeed, the above methodology is a common

practice among users of numerical libraries to confirm or rule-

out spurious results. However, manual differential testing on a

case-by-case basis is not only time consuming, but it also assumes

that the user has already discovered a problematic input, and that

identifying equivalent functions in other libraries (and writing tests

for them) is straightforward. An automated framework to uncover

numerical bugs in the first place rather than confirming suspicions

after the fact is the motivation for the work presented in this paper.

2.2 Definitions

Definition 2.1. Given a set F of functions, we define a binary

relation ◁ such that for any f1, f2 ∈ F , if f1 ◁ f2, then the set of

analytical mathematical computations implemented by f1 are a

subset of those implemented by f2.

Consider the generic functions, sqrt(x) and nthroot(n,x). We

say that sqrt ◁ nthroot. It then follows that all of the functionality

of sqrt is differentially testable against nthroot, but not vice versa.

Definition 2.2. Given a set F of functions, we define an equiva-

lence relation ▷◁ such that for any f1, f2 ∈ F , if f1 ▷◁ f2, then f1 ◁ f2
and f2 ◁ f1. We then say that f1 and f2 are function synonyms.

Note that the above definition of function synonyms does not

describe instances in which two functions can be made "equivalent"

via the fixing of certain parameters to a specific value, e.g., sqrt(x)

and nthroot(2,x), or the inlining of functionswithin larger expres-

sions, e.g., euclidean_norm(x,y) and sqrt(pow2(x)+pow2(y)).

However, we do allow for a special case f1 ▷◁ f2 modulo data

type in which the set of possible arguments given to either f1 or

f2 is restricted to an infinite1 subset of itself. For instance, though

gsl_bessel_In_scaled from GSL and ive from SciPy both im-

plement the exponentially-scaled modified Bessel function of the

first kind, the former requires that the first parameter be an integer

whereas the latter allows for a double-precision value. Therefore,

gsl_bessel_In_scaled ◁ ive but not vice versa. However, restrict-

ing the first parameter of ive to the integer data type results in

gsl_bessel_In_scaled ▷◁ ive modulo data type. We still refer to

such cases as function synonyms.

Definition 2.3. Two function outputs y1 and y2 are considered

E-equivalent if they fall into one of three cases:

1) y1,y2 ∈ R and |y1 − y2 | < E.

2) y1,y2 ∈ {+∞,−∞,−0, NaN} and are the same.

3) y1 and y2 are both exceptions.

Definition 2.4. A discrepancy is a tuple (C,p,Φ, µ ) in which C

is the equivalence class of function synonyms, p is the input that

provoked the discrepancy (i.e., the point of divergence), Φ is the

set of outputs between which there exists at least one pair that

is not E-equivalent, and µ is a unique hash value identifying the

discrepancy (see Section 3.3.2).

2.3 Scope of Our Approach

In this work, we focus on discovering discrepancies between special

functions, defined to be "function[s] (usually named after an early in-

vestigator of its properties) having a particular use in mathematical

physics or some other branch of mathematics" [45]. Furthermore,

we target special functions that are made publicly available via

each library’s API and are meant to be used standalone by a client

program. This choice of scope naturally fits differential testing for

several reasons: firstly, special functions are widely implemented by

numerical libraries and there are many of them. For instance, spe-

cial functions constitute between 16% to 84% of all API functions in

mpmath, SciPy, GSL, and jmatwith an average of 50%. Secondly, the

algorithms used to implement them are complex and diverse with

different developers making different choices on a case-by-case ba-

sis.2 Lastly, the arguments and return values of special functions are

elementary data types, thus facilitating input generation and output

comparison. For all of these reasons, such a focus has precedent in

the literature [7, 20, 21, 41, 42, 48, 49].

For any libraries that do not clearly delineate in the source code

what is and is not a special function (e.g., via namespaces or direc-

tory structures), we approximate by targeting functions in which

each parameter and return value represents a real number. Conse-

quently, functions that work exclusively with complex numbers,

matrices, and arrays are not targeted by the approach described in

this paper. Such a specification is made in an effort to maintain a

balance between function complexity and ease of comparability so

that differential testing is fruitful.

3 TECHNICAL APPROACH

Figure 1 depicts the three main components of FPDiff: (1) an ex-

tractor/generator that extracts signatures from library source code

1While the set of numbers representable with bits is not actually infinite, the term
"infinite" here is used to refer to the set of numbers represented in memory.
2Interested readers are referred to Numerical Methods for Special Functions [23].
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Figure 1: An overview of our framework which automatically collects function signatures, synthesizes executable drivers,

discovers function synonyms, and applies differential testing to find points of divergence between numerical libraries.

and synthesizes executable drivers for numerical functions, (2) a

classifier that clusters functions into equivalence classes of function

synonyms based on their outputs when evaluated on elementary

inputs, and (3) a differential tester that executes drivers within

each equivalence class on a set of adversarial inputs and reports

discrepancies found between function synonyms.

3.1 Drivers for Numerical Functions

3.1.1 Signature Extraction. Given a library’s source code, the ex-

tractor returns a list of function signatures and the names of any

potential imports/header files that might be required to call the

functions. The strategy for extracting this information is depen-

dent on each language’s handling of types and, furthermore, on

each library’s conventions for declaring functions. In this paper,

we implement FPDiff to target libraries written in both statically-

and dynamically- typed languages.

Signatures when given type information. The inclusion of type

information allows us to tailor the extractor to target only those

functions that fit our scope, i.e., those with at least one double value

in the input and that return a double value as the output. Once

the library convention for defining functions is identified, a simple

parsing of the source code for matching patterns suffices.

Signatures when given no type information. A potential source

of type information is parsing the library’s documentation, but

the quality and consistency of that documentation becomes the

limiting factor. For instance, mpmath makes no mention in the text

of its documentation about the types of function parameters. In-

stead the user is expected to reason about types based on typeset

mathematical formulas included in the documentation.

To address this challenge, we leverage developer-written tests to

gather partial type information. To this end, we parse and traverse

the AST for each test file to collect functions that, when called, have

arguments that are either literals of type int or double or whose

arguments are variables containing a reference to such values. In

lieu of complete type information, all of these numerical arguments

are collected and associated with the name of the called function.

Additionally, we collect import statements found in these tests.

While this approach helps to filter out functions that do not take

numerical arguments, it is limited: the literal arguments used to test

the functions do not reliably indicate the type of the corresponding

function parameter, e.g., when passing an integer 1 as an argument

that the corresponding function synonym in a statically-typed lan-

guage might require to be a double 1.0. Therefore, while the former

extraction technique creates a collection of definitive function sig-

natures with the desired parameter and return types, this technique

yields a collection of function signatures that, when called in the

library tests, had only numerical arguments. Such functions may

have return values that fall outside of our scope. The technique

for overcoming this ambiguity is addressed via instrumentation

added to the drivers during their generation (detailed below) and

the classification algorithm shown in Algorithm 1 and described in

Section 3.2.

3.1.2 Driver Generation. Because FPDiff executes each function

to identify function synonyms (Section 3.2) and to discover points

of divergence (Section 3.3.2), the goal of the driver generator is to

automatically create a harness around each function that facilitates

the function evaluation.

The driver generator receives input from the extractor consisting

of a collection of function signatures (with or without complete

type information) and any necessary header files or imports. The

generator inserts this information into a template to create drivers

like the GSL and SciPy drivers shown in Figure 2. Each driver must

meet the following criteria:

(1) Feed arguments from a uniform set of inputs to facilitate both

the placement of the functions into equivalence classes based

on their evaluation over elementary inputs and the subsequent

differential testing over the set of adversarial inputs. This is

accomplished by parameterizing each driver with two arrays

of double-precision floats and integers (first lines of Figures 2a

to 2c) such that a function with n parameters will involve n

inputs read from the appropriate arrays (highlighted lines in

Figures 2a to 2c).

(2) Allow for exceptions within the library code to propagate up-

ward to the calling procedure to be collected. For example, Line

4 in Figure 2a accomplishes this by overriding the default error

handler for GSL, which aborts program execution.

(3) Provide a means of raising an appropriate exception when at-

tempting to execute a driver for a function which, though found
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1 double gsl_sf_bessel_In_scaled_DRIVER(char*

doubleInput , char* intInput) {

2 double out;

3

4 gsl_error_handler_t * old_handler =

gsl_set_error_handler (& my_handler);

5

6 out = gsl_sf_bessel_In_scaled(intInput [0],

7 doubleInput [0]);

8 return out;

9 }

(a) Definitive driver synthesized for the GSL function

gsl_sf_bessel_In_scaled.

1 def scipy_special_ive_DRIVER0(doubleInput , intInput):

2 out = special.ive(doubleInput [0], doubleInput [1])

3 return float(out)

(b) One of the two drivers synthesized for the SciPy function ive.

Though executable, this driverwill not bemapped to the analogous

GSL function shown in (a) because ive will not be fed the same in-

puts.

1 def scipy_special_ive_DRIVER1(doubleInput , intInput):

2 out = special.ive(intInput [0], doubleInput [0])

3 return float(out)

(c) Second driver for the SciPy function ive. This driver will suc-

cessfully be mapped to the analogous GSL function shown in (a).

Figure 2: Examples of Generated Drivers

by the signature extractor, does not fit our chosen scope, e.g., a

function that was present in the developer tests with double in-

puts but returns arrays. Line 3 in Figures 2b and 2c accomplishes

this by raising an exception when the return of the function call

is not a floating-point number.

(4) For those functions for which we do not have complete type

information, the driver must utilize the proper configuration

of integer and double arguments to be correctly mapped to

potential function synonyms. See discussion below.

Fulfillment of the fourth criteria allows our pipeline to auto-

matically perform differential testing between libraries that do not

provide type information. Consider the example from Section 2.2

gsl_sf_bessel_In_scaled ▷◁ ive mod data type.

Because the signature for gsl_sf_bessel_In_scaled was ex-

tracted from a library with type information, the generator synthe-

sizes the single definitive driver shown in Figure 2a in which the

first parameter is an integer and the second is a double. However,

even though ive from SciPy is the proper function synonym, its

signature was extracted without type information. Thus, ive will

only appear functionally identical to gsl_sf_bessel_In_scaled

if given the same argument types. In other words, we have to en-

sure that the first argument to ive comes from the array of integer

inputs just like gsl_sf_bessel_In_scaled.

In order to address this challenge, the driver generator will create

multiple drivers for each extracted function signature that lacks

complete type information, each with a different configuration of

integer and double data types. Figures 2b and 2c illustrate the two

drivers synthesized for the SciPy function ive with their differ-

ence highlighted. During the classification process discussed in

Section 3.2, only the drivers with matching data type configura-

tions (in this case, Figure 2a and Figure 2c) will be recognized by

the classifier as function synonyms.

3.2 Function Classification

Our classifier addresses one of the main challenges of differential

testing: identifying what function pairs are "equivalent" and there-

fore acceptable for such testing. A set of drivers is supplied as input

to the classifier which outputs a set of equivalence classes that

indicate the existence of likely function synonyms (Definition 2.2).

Algorithm 1 describes our methodology. First, each function is

assigned a characteristic vector of numerical values that aims to rep-

resent the underlying semantics of the function (Lines 3 through 8).

Equivalence classes are then constructed based on the similarity of

these vectors (Lines 11 through 19). To generate each characteristic

vector, we leverage a property of any relatively well-written numer-

ical algorithm: for the overwhelming majority of its input domain,

the function is well-behaved [37]. Note that because the space of

possible floating-point values is so vast, each output inherently en-

codes detailed information about the underlying calculation used to

arrive at that value: a collection of such outputs therefore captures

a portion of the semantics of the program that generated it in a

form that is easily comparable via standard arithmetic operations.

In contrast, a numerical function that returns integer values has

outputs that contain much less information about the program’s

underlying semantics by way of the pigeonhole principle.3

To this end, our classifier evaluates each synthesized driver over

a set of elementary inputs. Elementary inputs are values for which

most functions are likely to exhibit well-defined behavior; the re-

sulting set of outputs constitutes the characteristic vector. Note

that the else branch on Line 7 of Algorithm 1 handles the possibil-

ity that an evaluation over an elementary input does not exhibit

well-defined behavior by logging an output of NaN. Furthermore,

the conditional statement on Line 9 removes unwanted drivers

that exhibited undesirable behavior on every evaluation over every

elementary input and, therefore, have a characteristic vector of all

NaN values; this works in tandem with the driver instrumentation

required by the third criteria for successful drivers as stated in

Section 3.1.2.

For the classification based on characteristic vectors, the condi-

tional on Line 13 ensures that only functions with the same number

and types of parameters are compared. Finally, the conditional on

Line 14 implies an element-wise comparison of the elements in each

characteristic vectors for E-equivalence (see Definition 2.3). Note

that the size of the E-neighborhood varies depending on the size

of the values being compared; intuitively, larger values will have

larger E’s. To address this, FPDiff users define a relative tolerance

ϵ such that if the relative error between any two values is less than

ϵ , the values will be considered E-equivalent.

3.3 Differential Testing

Our differential tester takes a set of equivalence classes and eval-

uates drivers over a set of adversarial inputs, i.e., inputs that are

3https://en.wikipedia.org/wiki/Pigeonhole_principle
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Algorithm 1: Function Classification

Input: Drivers, elementaryInputs

Output: equivalenceClasses

1 equivalenceClasses = []

2 for driver in Drivers do

3 for doubleInput, intInput in elementaryInputs do

4 result = driver(doubleInput, intInput)

5 if isNumerical(result) then

6 driver.characteristicVec.append(result)

7 else

8 driver.characteristicVec.append(NaN)

9 if allNaN(driver.charateristicVec) then

10 continue

11 match = False

12 for class in equivalenceClasses do

13 if sameParameterConfig(class[0],driver) then

14 if sameCharacteristicVec(class[0],driver) then

15 match = True

16 class.append(driver)

17 break

18 if not match then

19 equivalenceClasses.append([driver])

20 return equivalenceClasses

intended to provoke divergences between function synonyms. Out-

puts are then compared for E-equivalence with points of divergence

reported as a discrepancy (see Definitions 2.3 and 2.4).

There are three remaining challenges to enable differential test-

ing of numerical functions: (1) How do we obtain effective adver-

sarial inputs? (2) How do we triage discrepancies found? (3) How

do we automatically reduce the set of reported discrepancies to

facilitate manual inspection? We discuss these challenges below.

3.3.1 Sources for Adversarial Inputs. The set of inputs for which

a function produces significant divergences is infinitesimal com-

pared to the size of the possible domain [48, 49]. It is this fact that

both motivates our technique for classifying functions (Section 3.2)

and represents one of the major challenges for differential testing

of numerical libraries. Discovering such inputs is a well-studied

problem [5, 9, 15, 16, 21, 25, 49]; though we choose three sources

of inputs in this paper, it is worth noting that other input sources

may be used. For this work, our adversarial inputs come from tests

written by developers, a guided binary-search of a portion of the

domain, and special values as defined by the IEEE 754 Standard.

Test Migration Inputs. With test migration, we leverage the as-

sumption that inputs used in test programs are carefully chosen by

developers to expose corner cases in the algorithms being tested.

During the signature extraction process described in Section 3.1.1,

we collect such inputs and associate them with the function sig-

nature they were used with in order to migrate them to function

synonyms within the same equivalence class.

Inaccuracy-Inducing Inputs. For each pair of function synonyms

and for a specified domain range, we perform a binary guided

random search for inputs that maximize the relative error between

the two functions.4 These inputs are then collected and applied to

the rest of the functions in the equivalence class. The assumption

here is that inputs found to cause inaccuracies between one pair

of function synonyms will have a higher likelihood of prompting

divergence between other functions within the equivalence class.

Special-Value Inputs. In addition to the finite set of floating-point

numbers representable within a particular format, the IEEE 754

Standard also defines a set of special values: negative zero, positive

infinity, negative infinity, and NaN.5 These values can arise as the

result of certain floating-point operations and, as such, give rise to

the possibility that theymight be used as input to another numerical

function; therefore, while not strictly a part of an algorithm to

implement a mathematical function, it is still the responsibility of

developers to handle such inputs. Moreover, documentation for

libraries is often lacking when it comes to describing behavior for

inputs outside the expected domain if it mentions domain at all.

Using these values as adversarial inputs in our differential testing

will illustrate the choice (or lack thereof) that different developers

make on how to handle special values.

3.3.2 Discrepancy Triage. Recall that each discrepancy is defined

as a tuple (C,p,Φ, µ ) representing respectively the equivalence

class of function synonyms, the point of divergence, the outputs

exhibiting the divergence, and a unique identifying hash value (see

Definition 2.4).

Our analysis first maps each element of p to an element of

the abstract domain consisting of NaN, infinite, zero, negative,

and positive. The result is the abstract input p̂. For example, if

p = {0, -1.1, -inf}, then p̂ = {zero, negative, infinite}.

Each p̂ is then used to calculate µ, described in Section 3.3.3, and

categorize the discrepancy.

The discrepancy categories are summarized in Table 1 and are

loosely ordered by their likelihood of representing buggy behavior.

Such a categorization is intended to group together discrepancies

that likely indicate similar undesirable behaviors in one or more

libraries and serves as one of our key contributions that enable

FPDiff to effectively report bugs. These categories are a result of

a manual inspection of discrepancies discovered via our testing

framework. Each category is described and discussed below.

Category 6 discrepancies are those in which a hang is observed

in at least one of the libraries. Such discrepancies clearly represent

buggy behavior; programs should terminate gracefully regardless

of input, making a hang unacceptable.

Category 5 discrepancies are those in which a double output is

generated in at least one of the libraries from a p̂ containing a NaN

value. A NaN input could be the return value of another function

indicating that some illegal operation took place (e.g., zero divided

4Chiang et al. [16] find inputs that maximize error between a program and its high-
precision version, and focus on C programs. We adapt their technique to maximize
error across distinct implementations of numerical functions, written in Python and C.
5Though the IEEE 754 Standard defines a quiet NaN and a signalling NaN, the languages
we focus on do not define the behavior of the latter and use NaN to refer to the former.
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Table 1: A categorization of discrepancies, loosely ordered by likelihood of representing buggy behavior.

Category Discrepancy Description

6 A hang is observed in at least one of the libraries.

5 Double output is generated in at least one of the libraries from a p̂ containing a NaN value.

4 Mix of doubles, exceptions, and/or special values from a p̂ containing an infinite value.

3 A relative error greater than a chosen ϵ is detected between two libraries.

2 Mix of doubles, exceptions, and/or special values generated from a p̂ containing only positive, negative, or zero values.

1 Mix of special values and exceptions generated from any input type.

by zero, logarithm of a negative number, etc.). If the function re-

ceiving that NaN value produces a double value as result, then the

fact that an illegal operation occurred prior to the function call is

lost. In such cases, it is also troubling to consider the fact that an

input representing "not-a-number" somehow gave rise to a number

as an output. Category 5 discrepancies have a high potential for

representing true bugs.

Category 4 discrepancies are those in which a mix of doubles, ex-

ceptions, and/or special values are generated from a p̂ containing an

infinite value. The existence of such discrepancies may be due

to differing design choices between libraries on whether or not

to support the evaluation of limits approaching infinity. Domain-

specific knowledge regarding the asymptotic behaviors of the spe-

cial function in question is required to determine whether or not

each discrepancy represents a true bug.

Category 3 discrepancies are those in which a relative error greater

than a chosen ϵ is detected between two libraries. This indicates that

the libraries cannot agree on the result of a legitimate computation;

the seriousness of such an error has been well-documented with

tragedies such as the Patriot Missile failure and the explosion of

the Ariane 5 rocket [3, 4].

Category 2 discrepancies are those in which a mix of doubles, ex-

ceptions, and/or special values are generated from a p̂ containing only

positive, negative, or zero values. These discrepancies suggest

that the libraries do not agree on whether or not a problem oc-

curred in the computation. Such ambiguity is obviously undesirable,

though diagnosing this behavior as buggy can require substantially

more manual effort than the other categories above; see Section 4.3

for a discussion of some specific examples.

Category 1 discrepancies are those in which a mix of special values

and exceptions are generated from any input type. These discrep-

ancies are distinct from those in categories 2, 4, and 5 because no

double outputs are observed. This indicates that, while the libraries

all appear to agree on the fact that a problem occurred in the com-

putation, they disagree on how to handle such a problem. Category

1 discrepancies illustrate the lack of unifying standards for error

handling numerical libraries, and do not necessarily constitute re-

portable bugs.

While some of these categories are potentially discoverable by

systematically executing drivers over different inputs, doing so

within equivalence classes of function synonyms gives users the

added benefit of either suggesting the correct behavior (when there

is a general consensus between the other function synonyms) or

demonstrating the variety of different choices made by developers

in handling adversarial inputs.

As an additional measure to aid in discrepancy triage, FPDiff

also utilizes a δ -difference metric as described by Klinger et al. [29]

that quantifies for each function how many other function syn-

onyms within the equivalence class have outputs that disagree with

that function. For example, if function f1 returns NaN and its func-

tion synonyms f2, f3, and f4 all return 0 for a specific adversarial

input, the δ -differences will be 3 for f1 and 1 for the others. FPDiff

tags each discrepancy with the maximum δ -difference between all

the function synonyms. Larger values will therefore correspond

to discrepancies present in larger equivalence classes in which a

minority of function synonyms disagree with the majority.

3.3.3 Reducing Reported Discrepancies. In order to minimize the

reporting of multiple discrepancies that are all representative of the

same buggy behavior, we ensure that the each discrepancy output

by the differential tester is assigned a µ value that encodes the

defining characteristics of each discrepancy: the equivalence class

of function synonyms in which the discrepancy was observed, the

point of divergence, and the set of results that disagree. With this in

mind, µ is calculated as the hash value of the input tuple consisting

of the summation of the equivalence class’ characteristic array, the

abstracted input tuple p̂, and the category of the discrepancy. In

the case of multiple category 3 discrepancies with the same µ, the

one with the largest relative error is reported. In all other cases, the

first discrepancy found is the one reported.

Additionally, all category 1 discrepancies are removed from the

final reduced log of discrepancies. As discussed above, such discrep-

ancies indicate the different techniques library developers use to

handle inevitable numerical errors. While their existence is infor-

mative in its own right, they do not represent reportable bugs.

4 EXPERIMENTAL EVALUATION

This evaluation is designed to answer the following questions:

RQ1 How effective are our signature extractor and driver genera-

tor at discovering functions and synthesizing their drivers?

RQ2 How effective is our classifier at discovering function syn-

onyms within and across numerical libraries?

RQ3 What sorts of discrepancies does FPDiff discover between

function synonyms?

RQ4 Does differential testing discover discrepancies that repre-

sent reportable bugs? If so, how difficult is it to ascertain

which discrepancies are reportable?
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Selection of Numerical Libraries. We consider four numerical

libraries: the GNU Scientific Library (GSL), SciPy, mpmath, and

jmat. We chose open-source numerical libraries that have over-

lapping functionality, are widely-used in practice, and cover a

set of very different programming languages. GSL is a C library

of numerical routines whose special functions are a popular sub-

ject of experimental evaluation for numerical testing like this (e.g.,

[7, 21, 22, 41, 42, 48, 49]). SciPy is a well-known Python numerical

library that implements a variety of numerical routines and is used

by more than 136,000 GitHub repositories. mpmath is a Python nu-

merical library that implements much of the functionality of SciPy

with additional support for arbitrary-precision arithmetic and is a

standard package included in both the SymPy and Sage computer al-

gebra systems. jmat is a JavaScript numerical library that provides

implementation for special functions, linear algebra, and more; it is

the most popular JavaScript library with this functionality found

on GitHub.

Experimental Setup. The classifier uses a relative tolerance value

of ϵ = 10−8 (on the order of machine epsilon) to determine E-

equivalence. FPDiff uses a relative tolerance value of ϵ = 10−3 to

determine what amount of inaccuracy is considered severe enough

to report as a category 3 discrepancy (previously, we used the

same relative tolerance as the classifier but initial feedback showed

that some developers considered such inaccuracies too small to be

significant, even if their library was the only outlier). In the absence

of a ground truth by which to scale the absolute error, we use the

magnitude of the relative percent difference, shown in equation 1,

as our relative error. Any references to relative error within our

evaluation are taken to mean the relative percent difference.

|x1 − x2 |

( |x1 | + |x2 |)/2
= 2
|x1 − x2 |

|x1 | + |x2 |
(1)

The classifier executes each driver over 40 elementary inputs

to yield characteristic vectors. Elementary inputs of double type

are randomly and uniformly generated between 0 and 3 exclusive

and integer inputs are either 0, 1, 2, or 3. The choice of elementary

inputs was guided by intuition and refined heuristically. Roughly

speaking, most special functions tend to exhibit their most interest-

ing/defining behavior around zero and are more likely to be defined

for positive values than negative values.

Hangs constituting category 6 discrepancies are discovered by

setting a timeout threshold for each function’s execution. For our

experiments, we chose a time limit of 20 seconds.

We generated a collection of inaccuracy-inducing inputs using a

modified version of the s3fp tool developed by Chiang et al. [15]

which uses binary guided random testing to find inputs that maxi-

mize the floating-point error between 128-bit precision and 64-bit

precision versions of a single C program. We modified their source

code to also work with Python programs, to use 64-bit double data

types, and to calculate relative errors with equation 1. For each pair

of function synonyms, we allowed an hour of search time within

the domain interval [−100, 100] as done in their original evaluation.

Each function in the mpmath library is present in two different

namespaces: one that corresponds to an arbitrary-precision imple-

mentation and one for a floating-point-precision implementation.

Using this knowledge, the driver generator gives us a pair of drivers

Table 2: Evaluation of the Driver Generator

Library Eligible Functions # Captured % Captured

GSL 193 193 100%

jmat 154 154 100%

mpmath 211 147 69.7%

SciPy 206 180 87.4%

Total 764 674 88.2%

for each mpmath function. In the following evaluation, we do not

count these pairs as function synonyms discovered by FPDiff, we

do not double count mappings to each mpmath function, and we do

not count equivalence classes that only contain these pairs.

FPDiff is implemented as a collection of Python modules which

can be found at https://github.com/ucd-plse/FPDiff. The documen-

tation includes directions for those who wish to extend FPDiff to

add new libraries for testing. We ran our experiments on a work-

station with a 3.60GHz Intel i7-4790 and 32 GB of RAM running

Ubuntu 18.04.

4.1 Effectiveness of Extractor and Driver
Generator

To evaluate the effectiveness of the signature extractor and driver

generator, we report the recall with respect to drivers synthesized

by FPDiff for functions eligible for our experimental evaluation.We

omit precision calculations because, as discussed in Section 3.1.2, the

extractor/generator component creates drivers for a superset of the

targeted functions (in the case of libraries without type information)

which is handled with a combination of driver instrumentation and

the function classification described by Algorithm 1. Also note

that these components work in tandem and, as such, are evaluated

together; if the extractor successfully captured a function signature,

the generator will synthesize a driver for that signature.

Wemanually examine the documentation for the chosen libraries

to construct the ground truth of eligible functions for our study

(see Section 2.3 for the scope). For SciPy and mpmath’s functions

that include optional parameters with default arguments, we count

each possible configuration as a unique function signature. The

results are shown in Table 2.

Overall, we successfully generate an executable driver for 674

out of 764 eligible functions (88.2%). Note that the 100% recall for

GSL and jmat is unsurprising due to the fact that both libraries

include type information in their signatures, allowing us to simply

parse source code for matching patterns.

We found the success of these components to be highly correlated

with the thoroughness of library test code. For example, of the 64

mpmath functions we did not capture, 57 of them were not present

at all in the developer tests. The remaining 7 functions were not

captured because they were tested with named constants defined

elsewhere in the library or arguments to lambda expressions; in

these cases, our extractor was not able to determine that these

function’s parameters were numerical arguments as required by

our experiment’s scope.
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Table 3: Function Synonym Mappings Precision and Recall

Library Pair Precision Recall

GSL/jmat 27/27 (100%) 27/38 (71.1%)

GSL/mpmath 61/65 (93.8%) 57/69 (82.6%)

GSL/SciPy 68/69 (98.6%) 67/76 (88.2%)

jmat/SciPy 29/30 (96.7%) 27/43 (62.8%)

mpmath/jmat 44/45 (97.8%) 40/49 (81.6%)

mpmath/SciPy 47/48 (97.9%) 44/56 (78.6%)

same library 21/26 (80.8%) 16/21 (76.2%)

Total 297/310 (95.8%) 278/352 (79.0%)

While all but two of the eligible SciPy functions appeared in the

developer written tests, 24 of the 26 functions that did not receive

executable drivers were missed by the extractor because they were

either passed as function objects without parameters to a separate

testing function or their arguments were numpy.ndarray objects.

RQ1: It is not difficult to obtain a 100% capture rate for li-

braries containing type information; for those without such

information, the success of leveraging developer tests is highly

dependent on the quality of those tests. More mature libraries

such as SciPy are more likely to have more exhaustive tests

which benefits our technique.

4.2 Effectiveness of Function Classifier

To establish the ground truth for the set of mappings FPDiff should

capture, we manually placed all of the eligible functions into equiv-

alence classes based on documentation, source code, and other

external resources. Our function classifier reported 310 pairs of

function synonyms with 95.8% precision and 79.0% recall. A break-

down per-library is shown in Table 3. The set of correct function

synonyms constituted 126 equivalence classes, encompassing 498

functions ready for differential testing.

Precision was calculated by manually verifying each mapping

reported by FPDiff. The source of imprecision in all cases was the

choice of elementary inputs; while equivalent for positive inputs,

these false function synonyms diverge when the inputs are negative.

It is worth noting that while there were 13 incorrect mappings, these

were the consequence of only 7 misplaced functions.

To demonstrate the effectiveness of our classifier technique, con-

sider the set of Bessel functions. Between the four libraries, there

are about 90 such functions with each library using their own nam-

ing conventions to distinguish between them. FPDiff discovers 28

equivalence classes of Bessel functions, one of which encompasses

the regular cylindrical Bessel functions of the first kind with integer

order, shown below:





gsl_sf_bessel_Jn (GSL)

angerj (jmat)

besselj (mpmath)

jn (SciPy)

jv (SciPy)

jve (SciPy)

First, such mappings are non-obvious based on names alone.

For instance, gsl_sf_bessel_jl and gsl_sf_bessel_Jnu are cor-

rectly determined to not belong to this equivalence class. Second,

we see a valid intra-library function synonym, jn ▷◁ jv, despite

the fact that jn does not exist in the SciPy documentation. Third,

we observe a number of valid function synonyms mod data type

(see Section 2.2): gsl_sf_bessel_Jn is the implementation of the

regular cylindrical Bessel function of the first kind with integer

order. jn, jv, and besselj implement the same function, but for

any fractional order. jve is the same as jn and jv, but scaled by an

exponential of the imaginary part of the input. angerj is a general-

ization of the Bessel function of the first kind. All of these become

synonyms mod data type when their first parameter is an integer.

As for recall, the main causes for missingmappings were a failure

in the extractor to get the function in the first place or inaccuracies

in a function’s evaluation over elementary inputs that exceeded the

choice of ϵ . For instance, while FPDiff reported the six functions

above for the equivalence class of cylindrical Bessel functions of

the first kind with integer order, it failed to discover a seventh, the

jmat function besselj. This is because inaccuracies in the function

caused several of the elements in its characteristic vector to fall

outside of the acceptable E-neighborhood. However, FPDiff did

correctly place jmat’s besselj in the equivalence class represent-

ing the regular cylindrical Bessel functions of the first kind with

fractional order mentioned above.

Note that in the set of reported equivalence classes, there existed

5 correctly mapped functions that were not in the set of eligible

functions that we manually constructed. This was because we used

the documentation as reference when constructing the ground truth

and these 5 functions were not listed in the documentation (as in the

case of jn above). Any mappings to these functions were therefore

not counted in the recall portion since they were not in the ground

truth set.

RQ2: FPDiff finds function synonyms with a 95.8% preci-

sion and 79.0% recall, thus demonstrating the effectiveness

of classifying functions based on their evaluation over ele-

mentary inputs. This approach even managed to correctly

place functions that were not present in the documentation.

However, efficacy is influenced by the choice of elementary

inputs. Improvements in the extractor/generator component

would benefit recall.

4.3 Discrepancies Found

After removing discrepancies with identical values of µ, FPDiff

found a grand total of 655 unique discrepancies between function

synonyms from the GSL, jmat, mpmath, and SciPy numerical li-

braries. For the manual inspection for bugs that followed, all 328

category 1 discrepancies were removed to give a reduced set of 327.

Of these, we found 150 of them to represent 125 unique bugs. Specif-

ically, FPDiff identified 31 bugs in GSL, 33 bugs in jmat, 44 bugs in

mpmath, and 17 bugs in SciPy. We have reported all bugs to library

developers; so far, 30 bugs have been fixed, 9 have been found to

be previously known, and 25 more have been acknowledged by

developers.

Table 4 shows the counts of unique discrepancies found by

FPDiff broken down by adversarial input source and discrepancy
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Table 4: Discrepancies found per input source and category.

Category #

6 5 4 3 2 1 Total

Special Values 20 23 95 7 11 280 436

Test Migration - - - 43 107 48 198

Inaccuracy-Inducing - - - 13 12 1 26

Overall (Unique) 20 23 94 61 129 328 655

Reportable 19 21 37 23 50 0 150

Table 5: Bugs found per library and discrepancy category.

Category #

6 5 4 3 2 1 Total

GSL - 8 12 2 9 - 31

jmat - 5 8 8 12 - 33

mpmath 17 7 10 1 9 - 44

SciPy - 7 2 2 6 - 17

Total 17 27 32 13 36 - 125

category (see Table 1 for category descriptions), as well as counts

of discrepancies containing reportable buggy behavior and unique

bugs found per discrepancy category. In total, FPDiff used 160

special-value inputs, 4,513 migrated test inputs, and 1,092 inaccu-

racy inducing inputs. Each test-migration and inaccuracy-inducing

input was applied only to the equivalence class from which it was

found while each of the special value inputs was applied to all

equivalence classes. This combined with the fact that special value

inputs were the only adversarial inputs to yield category 4, 5, and 6

discrepancies explains why the relatively smaller number of unique

inputs generated so many more discrepancies. Migrated test in-

puts were significantly more effective than inputs discovered via

a binary-guided random search, generating over 7 times as many

overall discrepancies and over 3 times as many inaccuracies; this

lends support to our hypothesis that inputs used in test programs

are carefully chosen by developers to expose corner cases in the

algorithms being tested.

Table 5 shows the break down of reportable bugs per library and

discrepancy category. FPDiff helped us to identify the most bugs in

mpmath, followed by jmat, GSL, and SciPy. With the exception of

category 6, the distribution of bugs across libraries was mostly even

(with a couple of outliers in categories 3 and 4, see discussion below).

This demonstrates that the discrepancies found by FPDiff and the

bugs that they represent are not specific to a single numerical library.

Note that categories 2 and 4 represented the highest number of

bugs (36 and 32, respectively) while category 3 represented the

fewest (13 bugs).

We now offer a series of case-studies surrounding examples

discovered by FPDiff from each discrepancy category.

4.3.1 Category 6 Discrepancies. Because hangs are certainly buggy

behavior, every category 6 discrepancy has a high probability of rep-

resenting a reportable bug. Points of divergence that caused hangs

all included NaN or infinite values, leading to a natural suggestion

for a fix: checking inputs for special values. Such hangs were only

observed in mpmath with only 1 of the 20 not being reproducible

(this instance was due to an exception being raised regarding lack

of convergence when the function’s execution was allowed to ex-

ceed our chosen cutoff). While these hangs were acknowledged

by mpmath developers, fixes have yet to be applied, which might

indicate that the apparent simplicity of the fix may be misleading

(see discussion below).

4.3.2 Category 5 Discrepancies. Consider the following discrep-

ancy discovered by FPDiff:

(jmat)

(mpmath)

(mpmath)

(SciPy)

factorial(NaN)⇒ NaN

mp.factorial(NaN)⇒ NaN

fp.factorial(NaN)⇒ EXCEPTION

factorial(NaN)⇒ 0

The majority behavior of propagating the NaN, as observed in

jmat and the arbitrary-precision mpmath implementations, suggests

a more appropriate action than simply returning 0. After filing a

report, this was confirmed in the ensuing discussion with SciPy

developers, who stated, "inputs in the array that enter as NaN should

remain NaN." Thus, our bug report ultimately led to a fix to be

included in the 1.5.0 release of SciPy.

Note that even though such fixes may be conceptually simple

(check input for NaN, return a NaN if found, otherwise return the

function result), the complex structure of numerical software makes

for a non-trivial implementation. For this particular example with

scipy.special.factorial, the pull request (PR) containing only

this bug fix included 8 commits, 26 changes, and a back-and-forth

between maintainers encompassing dozens of comments that lasted

almost a month. Interested readers are encouraged to examine the

thread accompanying the PR.6

It is also worth noting the discrepancy between the arbitrary-

precision and floating-point-precision functions in mpmath. The

floating-point implementation throws an exception with the mes-

sage "cannot convert float NaN to an integer" while the

arbitrary-precision implementation propagates the NaN value. It is

not difficult to contrive a scenario in which a user swaps the two

implementations within some larger program, assuming they are

equivalent, thus possibly giving rise to unexpected failures.

4.3.3 Category 4 Discrepancies. Consider the following discrep-

ancy discovered by FPDiff between functions implementing the

Dirichlet eta function, also known as the alternating zeta function:

(GSL)

(jmat)

(mpmath)

(mpmath)

gsl_sf_eta(inf)⇒ 1

eta(inf)⇒ NaN

mp.altzeta(inf)⇒ 1

fp.altzeta(inf)⇒ 1

Again, the majority-rules intuition suggests that this function

asymptotically approaches 1. A confirmation of this via an external

resource and the fact that the jmat library supports evaluation of

limits led to a bug report and a fix.

Note from Table 5 that only 2 out of 32 bugs related to category

4 discrepancies were were attributed to SciPy. This might indicate

6https://github.com/scipy/scipy/pull/11254
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that SciPy has a more consistent policy for the evaluation of limits

in special functions than the other libraries.

4.3.4 Category 3 Discrepancies. The example shown in Section 2.1

is a category 3 discrepancy that was discovered by FPDiff using a

migrated test input from GSL. Searching the issue tracking system

for SciPy showed similar reports dating back to 2013 regarding

such inaccuracies in the Tricomi confluent hypergeometric function.

A recent comment from a developer on an issue filed in late 2019

stated, "hyperu definitely needs more improvements. We’re getting

there, but it’s a process." This demonstrates the fact that, unlike

those in categories 4-6, discrepancies in category 3 represent bugs

that do not suggest a natural or easy fix.

The fact that only a single inaccuracy bug was discovered in

mpmath is unsurprising; mpmath implements arbitrary-precision

arithmetic and should therefore be less susceptible to such defects.

On the other hand, more than half of the bugs from this discrep-

ancy category (8 out of 13) were attributed to jmat. This might

be a consequence of the relative immaturity of the software with

respect to the others it was tested against (the first commit to jmat

repository was in 2014) and its smaller group of contributors.

4.3.5 Category 2 Discrepancies. The following example shows two

discrepancies for the same equivalence class containing function

synonyms implementing the exponential integral or En-function:

(GSL)

(mpmath)

(SciPy)

gsl_sf_expint_En(-2,-2)⇒ EXCEPTION

expint(-2,-2)⇒ -1.84...

expn(-2,-2)⇒ inf

(GSL)

(mpmath)

(SciPy)

gsl_sf_expint_En(1,-1)⇒ -1.89...

expint(1,-1)⇒ EXCEPTION

expn(1,-1)⇒ inf

The exception thrown by GSL came with the message domain

error while the exception thrown by mpmath actually came from

the driver around the expint function that complained when the

return value was a complex number. Coming to conclusions about

this particular set of category 2 discrepancies requires some domain-

specific knowledge and a little experimentation.

The En-function has a branch cut along the negative real axis

so for that portion of its domain, these developers made different

choices about which value to return. When consulting the doc-

umentation, SciPy is the only library that provides an expected

domain, stating that both arguments should be greater than or equal

to zero. Furthermore, in the examples given in the documentation,

they demonstrate that the expected return for inputs outside of the

domain is a NaN. As a result, though the differing values are not

necessarily buggy, reports were filed for the lack of documentation

for GSL with respect to an expected domain, and the inconsistency

with which SciPy handles unexpected inputs.

4.3.6 Category 1 Discrepancies. Discrepancies in this category are

unlikely to represent reportable bugs, though they do illustrate the

ways in which intentional choices made by developers can create

points of divergence. Consider the following example of a category

1 discrepancy discovered by FPDiff in the equivalence class of

functions implementing the Bessel function of the second kind:

(GSL)

(jmat)

(mpmath)

(SciPy)

gsl_sf_bessel_Yn(0,-0.5)⇒ EXCEPTION

bessely(0,-0.5)⇒ EXCEPTION

bessely(0,-0.5)⇒ EXCEPTION

yn(0,-0.5)⇒ NaN

The exceptions from jmat and mpmath are from their generated

drivers complaining about complex returns and the GSL exception

is a domain error. From this, we observe that while jmat and

mpmath provide support for complex numbers, GSL and SciPy do

not. Furthermore, the means by which GSL and SciPy developers

choose to handle such computations outside of their chosen scope

differs, i.e., throwing exceptions versus generating NaN values.

RQ3: FPDiff discovered 655 unique discrepancies between

function synonyms encompassing all six categories of nu-

merical discrepancies. Different sources of adversarial inputs

vary in their effectiveness and the type of discrepancies they

reveal. Special-value inputs were particularly effective and

test-migration inputs proved to be superior to those gathered

via a binary guided random search.

RQ4: Ignoring category 1 discrepancies, we found that about

46% (150/327) of discrepancies concerned reportably buggy be-

havior. These 150 discrepancies represented 125 unique bugs.

While identifying such discrepancies can be labor intensive

and sometimes requires domain-specific knowledge, those of

higher category or larger maximum δ -difference values are

more easily diagnosed as buggy.

4.4 Threats to Validity

In this paper, we implement systematic and automated differential

testing to discover discrepancies across numerical libraries. How-

ever, our approach has a number of limitations. First, our approach

only targets a subset of the functions present in numerical libraries.

Even so, special functions make up a large class of complex func-

tions that are widely-studied in the literature. The results of our

experiments stand on their own. Second, our extractor strategy for

libraries with incomplete type information is limited by the thor-

oughness of developer-written tests. We aimed to reduce this threat

by including popular numerical libraries that are actively used and

developed. Third, the choice of elementary inputs can cause the

classifier to miss some mappings. We attempted to increase our

recall by running the pipeline multiple times and refining the range

of inputs heuristically, to positive results. Fourth, not all discrepan-

cies represent buggy behavior; results must be manually inspected

to determine whether or not a discrepancy is a bug. We take strides

to remedy this by proposing a categorization that can be used to ef-

fectively triage discrepancies; by automatically removing category

1 discrepancies, we reduce the number to be inspected by half.
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5 RELATED WORK

Numerical Software Testing. A variety of tools have been devel-

oped for testing numerical software, from which a large number

deal with input generation. Fu and Su [21] and Bagnara et al. [5]

generate inputs that maximize code coverage via unconstrained

programming and symbolic execution, respectively. Others maxi-

mize the floating-point error in the result via genetic algorithms

[49], binary search over a specified domain [16], and symbolic exe-

cution [25]. In addition to maximizing error, recent work [48] also

applies a patch of piecewise quadratic functions to approximate

the desired behavior. Barr et al. [7] leverage symbolic execution to

discover inputs that trigger exceptions. Chiang et al. [15] discover

diverging results in certain types of numerical programs. All the

above techniques are complementary to our approach.

To address the missing oracle problem, Chen et al. [12] leverage

invariant properties referred to as "metamorphic relations". This

technique has seen success in testing certain numerical routines.

For instance, LAPACK [2] runs compile-time tests for their Linear

Equation and Eigensystem routines using such metamorphic rela-

tions. However, such relations require domain-specific knowledge

and cannot possibly cover all corner cases. Kanewala and Bieman

[28] apply machine learning for mining metamorphic relations.

Other approaches focus on analysis of numerical code. Bao and

Zhang [6] use a bit tag to track the propagation of inaccuracies

through a program’s execution. Benz et al. [9] conduct a parallel

"shadow execution" of a program with higher precision "shadow

values" to detect inaccuracies. Fu et al. [20] automatically perform

backward error analyses on numerical code. Fu and Su [22] propose

a floating-point analysis via a reduction theory from any given anal-

ysis objective to a problem of minimizing a floating-point function.

When it comes to testing numerical libraries (as opposed to indi-

vidual functions, either standing alone or within a larger program

context), many of the above works and many others like [33, 41, 42]

evaluate the effectiveness of their tools on portions of popular nu-

merical libraries such as GSL and LAPACK, but none has applied a

differential approach to compare such libraries.

Of the papers cited in this work, only Dutta et al. [18] focus

their efforts on numerical libraries written in Python, namely the

probabilistic programming libraries Edward and Stan. Though the

work of Yi et al. [48] focuses on 20 special functions in GSL, they do

have a small aside that applies their tool to 16 analogous functions

discovered manually in SciPy. In addition, they also use analogous

mpmath functions executed at high-precision as their ground truth.

Differential Testing. Differential testing [34] tests multiple imple-

mentations that share the same functionality with the same input.

The goal is to identify bugs by observing the output differences. Its

utility as a tool for finding bugs has been well-documented, being

used to test compilers [40, 46], JVM implementations [13], program

analyzers [29], probabilistic programming systems [18], interactive

debuggers [31], code coverage tools [47], and certificate validation

in SSL implementations [14] to name a few.

In its built-in tests, SciPy conducts a manually written differ-

ential test of a subset of special functions against the analogous

functions in the mpmath library [26]. This manual effort highlights

the value of differential testing in the context of numerical libraries.

To the best of our knowledge, we are the first to conduct auto-

mated differential testing of numerical libraries for the purpose of

discovering discrepancies among libraries.

Test Migration. Behrang and Orso [8] introduce a tool for au-

tomatically migrating tests across similar mobile applications, es-

sentially translating a sequence of events into a form that can be

consumed by the target app. Qin et al. [38] present TestMig, an

approach to migrate GUI tests from iOS to Android. To the best of

our knowledge, we are the first to use test migration in the context

of numerical software.

API Mapping. Nguyen et al. [35, 36] use supervised learning to

train a neural network on existing code migrations for API mapping.

Bui [11] proposes to use Generative Adversarial Networks to "align"

two different vector spaces of embeddings generated separately

for a pair of APIs. Recent work [17] creates function embeddings

to find function łsynonymsž across Linux file systems and drivers.

However, to the best of our knowledge, such techniques have not

been applied to the APIs of numerical libraries. The former ap-

proach suffers from a lack of parallel corpora. The latter two utilize

embeddings of functions based on their calling context which, for

numerical functions, can be widely-varied or even non-existent if

being used for one-off calculations.

In the realm of mapping math APIs, Santhiar et al. [39] similarly

leverage the idea of mining function specifications from unit tests

and using the outputs of functions to produce function mappings.

However, their tool MathFinder requires the user to input a descrip-

tion of the desired functionality. This query is then tested against

the unit tests of the target library to find matching outputs. Math-

Finder’s motivation is different; mappings are targeted and queries

are formed one at a time manually. By contrast, our technique is

automatic, untargeted, and it does not require input specifications.

6 CONCLUSION

We proposed an approach for finding discrepancies between syn-

onymous functions in different numerical libraries as a means of

identifying incorrect behavior. Our approach automatically finds

such synonymous functions, synthesizes testing drivers, and exe-

cutes differential tests to determinemeaningful discrepancies across

numerical libraries. We implemented our approach in a tool named

FPDiff, which automatically discovered 126 equivalence classes

across the libraries GSL, jmat, mpmath, and SciPy with a 95.8% pre-

cision and 79.0% recall. The fact that discrepancies are inherently

difficult to find enabled us to cluster function synonyms based on

their outputs over elementary inputs. Using a selection of adversarial

inputs, we discovered 655 unique discrepancies within equivalence

classes of these function synonyms, 150 of which represent 125

unique bugs. We have reported all bugs to library developers; so

far, 30 bugs have been fixed, 9 have been found to be previously

known, and 25 more have been acknowledged by developers.
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