
Fixing Dependency Errors for Python Build Reproducibility

Suchita Mukherjee
University of California, Davis

United States of America
sumukherjee@ucdavis.edu

Abigail Almanza
University of California, Davis

United States of America
aalmanza@ucdavis.edu

Cindy Rubio-González
University of California, Davis

United States of America
crubio@ucdavis.edu

ABSTRACT

Software reproducibility is important for re-usability and the cu-
mulative progress of research. An important manifestation of un-
reproducible software is the changed outcome of software builds
over time. While enhancing code reuse, the use of open-source de-
pendency packages hosted on centralized repositories such as PyPI
can have adverse effects on build reproducibility. Frequent updates
to these packages often cause their latest versions to have breaking
changes for applications using them. Large Python applications
risk their historical builds becoming unreproducible due to the
widespread usage of Python dependencies, and the lack of uniform
practices for dependency version specification. Manually fixing
dependency errors requires expensive developer time and effort,
while automated approaches face challenges of parsing unstruc-
tured build logs, finding transitive dependencies, and exploring an
exponential search space of dependency versions. In this paper, we
investigate how open-source Python projects specify dependency
versions, and how their reproducibility is impacted by dependency
packages. We propose a tool PyDFix to detect and fix unrepro-
ducibility in Python builds caused by dependency errors. PyDFix
is evaluated on two bug datasets BugSwarm and BugsInPy, both
of which are built from real-world open-source projects. PyDFix
analyzes a total of 2,702 builds, identifying 1,921 (71.1%) of them to
be unreproducible due to dependency errors. From these, PyDFix
provides a complete fix for 859 (44.7%) builds, and partial fixes for
an additional 632 (32.9%) builds.

CCS CONCEPTS

· Software and its engineering→ Software configurationmanage-

ment and version control systems; Software libraries and repos-

itories; Software maintenance tools; Maintaining software;
Software evolution; Reusability.

KEYWORDS

software reproducibility, build repair, dependency errors, Python

ACM Reference Format:

Suchita Mukherjee, Abigail Almanza, and Cindy Rubio-González. 2021.

Fixing Dependency Errors for Python Build Reproducibility. In Proceedings

of the 30th ACM SIGSOFT International Symposium on Software Testing and

Analysis (ISSTA ’21), July 11ś17, 2021, Virtual, Denmark. ACM, New York,

NY, USA, 13 pages. https://doi.org/10.1145/3460319.3464797

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ISSTA ’21, July 11ś17, 2021, Virtual, Denmark

© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8459-9/21/07.
https://doi.org/10.1145/3460319.3464797

1 INTRODUCTION

Reproducibility of software artifacts is one of the most significant
challenges faced by developers and researchers. Reproducibility can
be defined as the repeatability of the process of establishing a fact
or of conditions under which the same fact can be observed [20].
While the re-use of code components is important for building
on existing knowledge and computations, it becomes increasingly
more important for open-source software. Open-source software is
often built through extensive collaborations, often involving several
years of effort. For open-source software to be truly accessible,
providing access to source code and documentation may not be
sufficient if the reproducibility of the artifact or computational
experiment does not stand the test of time.

The adherence to the principle of re-usability is exemplified
by the evolution of highly interconnected ecosystems of open-
source software libraries hosted on centralized code repositories
like Maven Central Repository [7] and PyPI [12]. While this has
made the development of new software easier, dependence on other
software packages has also led to more build breakage and spread
of bugs in dependency networks. Seo et al. [35] found in their study
of Java and C++ build failures that nearly half of all build errors are
caused by software dependencies. When evaluating Python gists
available on GitHub, Horton and Parnin [28] found that 52.4% of
the gists failed to execute due to a dependency error. The growth of
dependency packages in each programming language’s ecosystem
has created transitive dependencies between these packages. Such
dependencies can have the effect of propagating bugs and vulnera-
bilities, and the removal of a package central to such dependency
networks can affect up to 30% of the existing applications [31].
Tomassi et al. [37] while reproducing fail-pass build pairs had a
success rate of 5.56% out of the 55,586 pairs collected. Their manual
evaluation of 100 unreproducible artifacts showed failure to install
dependencies to be the leading cause of unreproducibility.

The software engineering community has made great strides to-
wards achieving reproducibility. The advent of tools like Docker [4]
and Kubernetes [6] has simplified the creation and deployment of
containers. However, the problem of dependency versions continues
to hinder attempts of achieving reproducibility through container-
ization. Software dependencies are constantly evolving packages
and often receive regular updates for fixing bugs and adding fea-
tures. While the new versions are aimed to enhance the software,
they may cause many new issues to surface in applications utilizing
these packages. Backward compatibility may change with updated
packages, potentially leading to unwanted changed behavior that
affects reproducibility. As older versions of dependency packages
become deprecated, or the package index URLs become stale, repro-
ducing artifacts that require those older versions becomes difficult.

Recently, Python was reported by several language popularity
indices to have become the second most popular language amongst

439

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3460319.3464797
https://doi.org/10.1145/3460319.3464797

ISSTA ’21, July 11–17, 2021, Virtual, Denmark Suchita Mukherjee, Abigail Almanza, and Cindy Rubio-González

developers, displacing Java [39]. This shows how ubiquitous Python
has become in the programming world. However, with the transi-
tion from Python 2.x to 3.x there have been several backward incom-
patible changes in the language itself [18]. As a consequence, many
Python packages have released versions with breaking changes,
thus contributing to the unreproducibility of Python artifacts. This
is a huge concern even for projects that pin all of their dependen-
cies because dependency versions can be removed from the Python
index without warning. While it is possible to manually fix depen-
dency issues when re-using an application, it requires expensive
developer hours and domain knowledge.

The issue of reduced reproducibility caused by changing package
versions is especially significant for bug datasets, whose growth
and longevity depend on the reproducibility of artifacts. Datasets
of software bugs play a significant role in the evaluation of fault
localization and repair techniques. Two recent Python bug datasets
BugSwarm [37] and BugsInPy [41] collect bugs from GitHub open-
source projects. While BugSwarm has reported the low repro-
ducibility rate of these bugs as a hindrance for the growth of the
dataset, BugsInPy has manually pinned appropriate versions for the
dependencies of each project. However, neither dataset has consid-
ered the impact of configuration drift in their design and measures
to preserve reproducibility. Configuration drift is the phenome-
non of a code snippet going out-of-date because APIs it depends
on experience breaking change over time [30]. In our analysis of
2,584 BugSwarm builds, we find a total of 46,523 installed packages,
comprising of 22,506 project and 24,017 transitive dependencies,
respectively. 62.4% of project dependencies are pinned while only
4.0% of transitive dependencies are pinned. Overall, 41.2%, 32.2%
and 26.6% dependencies are found to be constrained, pinned and
unconstrained, respectively.

In this paper, we look into the usage of dependency packages and
their version specifications in builds of open-source Python projects.
We focus on builds whose current build logs contain dependency-
related errors that were not present in the original build run at the
time the code was committed to GitHub, thus making the builds
no longer reproducible. We propose a tool PyDFix that identifies
dependency-related error messages in build logs that contribute
to unreproducibility, and extracts dependencies that are possibly
causing these errors. PyDFix then iteratively builds a final list of
pinned dependencies to fix dependency-related build errors that form
a "patch" to make the build reproducible again. The reproducibility
is ensured by validating against the original build logs to check
the final outcome of the build and the results of any associated
tests. Each artifact in the bug datasets consists of a failed build
triggered by a buggy commit and a passed build triggered by the
commit with a bug fix. PyDFix’s goal is to achieve reproducibility.
The builds associated with buggy commits should terminate with
the same build errors or failed test results as originally observed,
and for passed builds, the build should be successful and all tests
pass. While we expect PyDFix to be useful for maintainers of bug
datasets, any developer facing issues while rebuilding a historical
Python build due to package dependencies can utilize PyDFix.

Recent approaches [26, 32, 33] repair build failures in Java projects,
but do not focus on reproducibility. In terms of Python, Docker-
izeMe [29] works on inferring environment configurations for

Python gists, and V2 [30] identifies out-of-date gists and note-
books due to breaking changes in APIs used by them. Although
these studies have a focus on resolving Python dependency issues,
their approaches do not work for large Python applications. Sciu-
nit [36] and ReproZip [21] present a preventive approach based
on operating-system call traces to containarize applications and
maintain their reproducibility. However, these approaches cannot
be used if an artifact is already unreproducible.

We evaluate PyDFix on 2,702 Python builds from the BugSwarm
and BugsInPy datasets. Only builds which had the original source
code available on GitHub were included in the evaluation as the
source code provided for artifacts in both datasets contained modi-
fications aimed at maintaining reproducibility. PyDFix identifies
a total of 1,921 builds as being unreproducible due to dependency
errors. These include 67.2% of analyzed builds from BugSwarm,
and 84.9% of analyzed builds from BugsInPy. PyDFix successfully
computes a complete fix for 859 builds (40.9% and 55.5% of iden-
tified builds from BugSwarm and BugsInPy, respectively) while
also creating partial fixes, which have not restored reproducibility
but resolved a number of dependency-related errors for 632 builds
(32.1% of BugSwarm builds and 35.4% of BugsInPy builds).

The main contributions of this paper are:

• We study dependency usage, version specifications and inclusion
of transitive dependencies in Python projects (Section 3).
• We design an algorithm to automatically identify dependency
errors and likely candidate dependencies causing such issues
from build logs (Section 4.1).
• We design an iterative solving algorithm to synthesize and apply
patches based on identified candidate dependencies (Section 4.2).
• We develop PyDFix to identify and fix unreproducible Python
builds caused by dependency packages, and conduct a large-
scale evaluation on 2,702 builds from two Python bug datasets
BugSwarm and BugsInPy (Sections 5.1 and 5.2).

2 BACKGROUND AND MOTIVATION

This section provides background on Python dependencies, an
example of dependency errors, and some terminology.

2.1 Managing Python Dependencies

Python developers have multiple options to specify their applica-
tions’s dependencies. Dependency requirements can be declared in
text files containing one dependency specification per line, or by
using the install_requires keyword in a setup.py file, which is
a script used for packaging and distribution of Python projects. Con-
figuration files for continuous integration (CI) tools like TravisCI [16]
can also contain Python dependency package declarations. Sev-
eral virtual environment management packages like tox [14] and
pyenv [10] allow configurations to declare dependencies. Moreover,
there exist multiple package managers for Python, the two most
popular being pip [8] and conda [2]. We only consider packages
installed using pip as it is Python’s standard package manager [17].

PEP 440 [34] and PEP 508 [22] provide detailed information
about the versioning system of Python packages as well as the
types of dependency declarations and version specifications avail-
able to Python developers. However, there is no single set of best
practices that the Python developer community follows and it can

440

Fixing Dependency Errors for Python Build Reproducibility ISSTA ’21, July 11–17, 2021, Virtual, Denmark

vary greatly depending on developer choice. Dependency version
specification in Python can be done in three ways:

• Pinned Dependency: a specific version is included in the de-
pendency declaration e.g., numpy==1.17.5.
• Constrained Dependency: a range of versions is specified in
the dependency declaration e.g., numpy>=1.17.5,!=1.18.2.
• Unconstrained Dependency: no version specification is men-
tioned in the dependency declaration.

Dependency packages with a pinned version can affect a build
outcome if the package is removed from PyPI, or if its versioning
system changes. For example, the package pytest-capturelog,
which is documented in libraries.io [11] no longer exists in PyPI.
Another example is pyatom, which still exists in PyPI but whose
versioning system completely changed in January 2020 [9]. Earlier
versions are no longer hosted on PyPI.

The default behavior of pip for constrained dependencies is to
fetch the latest available version that satisfies the constraint. Thus,
both unconstrained and constrained dependencies can lead to the
installation of versions newer than those originally used. While
later versions of dependency packages have bug fixes and additional
functionalities, they may also contain breaking changes that cause
build failure for applications that worked with older versions.

Apart from declared dependencies, unreproducibility can also
be caused by transitive dependencies. Transitive dependencies are
packages not directly used by the application itself, but by a package
used by the application. Each package used by an application can
have any number of such transitive dependencies, and it is difficult
to infer which version would be appropriate for a failing transitive
dependency without analyzing the source code of the dependency
package directly used by the application.

2.2 An Example of Dependency Errors

Figure 1 shows an example of dependency errors in a Python project.
Figure 1b shows the current build outcome for a historical com-
mit [1] from the GitHub repository cloudify-system-tests. The
build terminates with an error due to the package stevedore [13],
which was not encountered in the original build as shown in Fig-
ure 1a. However, this dependency is not declared within the appli-
cation. In the log line documenting the installation of stevedore
shown in Figure 1c, we observe that stevedore is actually a transi-
tive dependency, required by the package openstacksdk. Although
cloudify-system-tests’s source code has pinned a version for
openstacksdk, the version constraint from stevedore is actually
being controlled by openstacksdk. At the time when this code
was committed to the GitHub repo, the stevedore version fetched
by pip was compatible with Python2.7, which is correct for this
version of cloudify-system-tests. However, the current version
of stevedore requires a Python version ≥ 3.6 and hence, causes
an error when pulled into the build process for this commit.

As shown in Figure 1d, pinning stevedore does not repair the
build completely and another error is encountered. While the error
due to stevedore occurred during the installation steps, this new
error occurs during the run of flake8 on the source code. The error
message now indicates that it is caused by a failure to find the mod-
ule configparser [3]. Inspecting the installation steps of the logs
show that configparser was indeed installed and it is a transitive

The command "flake8 ." exited with 0.

Done. Your build exited with 0.

(a) Fragment from original build log

error in setup command: Error parsing /tmp/pip-build-D943WL/stevedore/setup.

cfg:

--

Command "python setup.py egg_info" failed with error code 1 in /tmp/pip-build

-D943WL/stevedore/

The command "pip install ." failed and exited with 1 during .

The build has stopped.

(b) Fragment from current build log

Collecting stevedore>=1.17.1 (from openstacksdk0.9.13->cloudify-system-tests

==4.0.1)

(c) Dependency installation of stevedore in build log

File "/home/travis/virtualenv/python2.7.9/lib/python2.7/site-packages/flake8/

main/mercurial.py",

line 7, in <module>

import configparser

ImportError, No module named configparser

travis time:end:Occ6ae93:start=1608325842106715960,finish

=1608325842255517368,duration=148801408

The command "flake8 ." exited with 1.

Done. Your build exited with 1.

(d) Build error after pinning correct version of stevedore

Collecting configparser (from flake8==3.3.0)

(e) Dependency installation of configparser in build log

stevedore==1.17.1

configparser==3.5.0

(f) Final patch with pinned problematic dependencies

Figure 1: An example requiring multiple version specifica-

tion changes to restore build reproducibility

dependency of flake8 [5]. Although the developers specified a
particular version for flake8, there is no version constraint added
for configparser within the package flake8. The current version
of configparser again works only with Python versions ≥ 3.6 and
hence, is incompatible in the current build process. Pinning the
correct version of configparser along with stevedore results in
restoring the build to original status.

2.3 Terminology

Here we introduce some terms to be used in the paper.

• Triggering Commit: A commit that triggered a build. For the
example in Section 2.2, the triggering commit is the commit [1]
that executed the original build shown in Figure 1a.
• Build Log: A build log is the log generated when a build is
executed. An original build log is the log produced by the build
started by the triggering commit, which shows the expected
build process. A current build log is the log generated by execut-
ing the same build process at a later time (now). The terminating

441

ISSTA ’21, July 11–17, 2021, Virtual, Denmark Suchita Mukherjee, Abigail Almanza, and Cindy Rubio-González

1-5 6-1
0

11-
15

16-
25

26-
100 >1

00
0

500

1,000

1,500
1,564

410

88 94 59 43

Number of Project Dependencies

N
u
m
b
er

o
f
B
u
il
d
s

(a) Builds by number of project dependencies

1-5 6-1
0
11-

15
16-

20
21-

25
26-

50
51-

75
76-

100 >1
00

0

200

400

600

800

396

826

143
77 76 81 63 42 6

Number of Transitive Dependencies

N
u
m
b
er

o
f
B
u
il
d
s

(b) Builds by number of transitive dependencies

Figure 2: Builds by number of project and transitive dependencies

lines of the original build log are shown in Figure 1a while the
current build log’s terminating error is shown in Figure 1b.
• Build Outcome: A build outcome is the final status of a build.
For a passed build, build outcome is success. In case of a failed
build, the build outcome is the error that terminates the build.
• Unreproducible Build: A build whose current build outcome
differs from its original build outcome. For example, a failed build
that currently terminates due to an error different from the error
of the original build, or a passed build that is currently failing.
Both failed and passed builds are considered unreproducible
if associated tests have different results from the original logs.
In our example, the original build log in Figure 1a shows a
successful build outcome, but the current build outcome is the
error shown in Figure 1b.
• Dependency Chain: Every transitive dependency has a depen-
dency chain showing the dependency packages that led to the
inclusion of this transitive dependency. E.g., in Figure 1c the
dependency chain for the transitive dependency stevedore is
openstacksdk==0.9.13→cloudify-system-tests==4.0.1.
• Patch: A patch is any change to an application intended to fix
a problem. In our study, a patch is a list of dependency speci-
fications that pin the versions of dependency packages to fix
dependency-related errors that make an application’s build un-
reproducible. An example of a patch is shown in Figure 1f.
• Patch Candidate: For PyDFix, a patch candidate consists of a
single dependency package and its suitable version. Figure 1f
shows the two patch candidates in the final patch used to make
the build reproducible.
• Fix Status: The status of PyDFix’s fix on a build which is iden-
tified as unreproducible due to dependency errors. If PyDFix is
able to restore reproducibility, i.e., make the build outcome as
well as the test results of the unreproducible build match that of
the original build, then the fix status is considered a Complete Fix.
If the build was not made reproducible but a non-empty patch
is computed, the fix status is considered a Partial Fix. Section 2.2
shows how a patch was applied to an unreproducible build to
achieve the outcome of a Complete Fix.

3 DEPENDENCY VERSION SPECIFICATIONS

To further motivate our work, we investigate the frequency in dif-
ferent dependency version specifications used in 1,292 BugSwarm
artifacts, i.e., 2,584 builds.1 Our approach consists of parsing the
original log of each build. We adopt this method instead of directly
analyzing the source code because of two reasons. Firstly, we only
identify the dependencies that are installed and used, thus avoiding
dependencies that may have been declared in unused sections of
the source code. Secondly, this approach allows us to identify all
transitive dependencies being installed, which are not declared in
the source code but are required by other dependencies.

3.1 Frequency of Version Specifications

We observe a widespread use of dependency packages with a total of
46,523 instances of package installations across all builds. Figures 2a
and 2b show the count of builds containing a range of project and
transitive dependencies, respectively. We found that 326 builds
(12.6%) did not fetch any packages from the PyPI index, i.e., these
builds have zero dependencies. Additionally, 548 builds (21.2%)
did not show evidence of installing any transitive dependencies.
For both project and transitive dependencies, most builds have
less than 10 dependencies per project. However, the number of
builds having a large number of dependencies is not insignificant.
Especially in the case of transitive dependencies, the number of
builds in higher dependency ranges is evenly distributed. While
builds can fail due to an error caused by even a single dependency
and fixing such an error requires domain knowledge, the need for an
automated approach for dependency resolution is more pronounced
for artifacts having a large number of dependencies.

In Figure 3 we show the distribution of types of dependency ver-
sion specifications encountered. These are all dependencies found
in the entire set of build logs analyzed. The labels above each bar
in the plot refer to the absolute count represented by the bar fol-
lowed by its percentage across all dependencies of that type, i.e.,
project, transitive, and total dependencies. The figure shows that
the majority, 62.4% of project dependencies are pinned while 12.1%
are constrained, and 25.5% are unconstrained. However, most of
the transitive dependencies are constrained while only 4.0% are

1BugsInPy could not be analyzed because the original logs were not available.

442

Fixing Dependency Errors for Python Build Reproducibility ISSTA ’21, July 11–17, 2021, Virtual, Denmark

Pinned Constrained Unconstrained
0

1

2

·104

14,037

62.4%

2,720

12.1%

5,749

25.5%

949

4.0%

16,463

68.5%

6,605

26.6%

14,986
32.2%

19,183
41.2%

12,354
26.6%

N
u
m
b
er

o
f
D
ep
en
d
en
ci
es

Project Transitive Total

Figure 3: Dependencies by version specification

pinned. A significant percentage of transitive dependencies, 26.6%
are also unconstrained. While looking at the total dependencies
including both types, the largest portion which is 41.2% is con-
strained followed by 32.2% pinned and 26.6% unconstrained. This
highlights the need for developing tools like PyDFix to address
dependency-related errors.

From Figure 4a we also find that only 12.9% of the builds have
most of their required dependencies pinned, 52.0% of the builds
have the majority of their required dependencies constrained, and
22.5% builds have the majority of the package dependencies un-
constrained. As explained in Section 2.1, both constrained and
unconstrained dependencies can lead to the installation of newer
versions that may contain breaking changes. Finally, we observe
from Figure 4b that 49.6% of the builds contain more transitive
dependencies than project dependencies. This underscores how
important transitive dependencies and their version specifications
are while maintaining reproducibility of builds.

Findings: 46,523 packages are installed across 2,518 builds.
1,067 builds have 10+ project or transitive dependencies.While
most project dependencies were pinned at 62.4%, only 4.0%
of transitive dependencies are pinned. We find 12,354 (26.6%)
total unconstrained and 19,183 (41.2%) constrained depen-
dencies, which increase the likelihood of build breakage. The
14,986 (32.2%) pinned dependencies can also lead to unrepro-
ducibility if removed from the package index. 49.6% of builds
contain more transitive than project dependencies, highlight-
ing the importance of transitive dependencies in build repair.

3.2 Challenges in Fixing Broken Dependencies

The main challenge in identifying dependency-related unrepro-
ducible builds is due to the unstructured nature of build logs. Log-
ging of build errors is varied, and often does not provide exact
information about the cause of an error. Log parsing approaches
have to take into account error traces preceding error messages

12.9%52.0%

22.5%

12.5%

Majority Pinned

Majority Constrained

Majority Unconstrained

Majority Not Pinned

(a) Breakdown of builds by majority dependency version speci-

fication

49.6%

50.4%

More Transitive Dependencies

More Project Dependencies

(b) Breakdown of builds by majority type of dependency

Figure 4: Breakdown of builds by dependency version speci-

fications and dependency type

in the search of a root cause when unable to extract desired in-
formation from error messages in logs. Moreover, there exists no
exhaustive set of errors that are caused by package dependencies
and can be used for identification. Thus, identifying dependency-
related build errors is a significant challenge.

Second, for large Python applications using many dependency
packages, the search space of version specifications is exponential.
Each Python package has several release versions available on pack-
age indexes, and a brute force approach to find the correct version
is not feasible. Hence, it is important to limit the modification of
version specifications to only dependencies causing errors while
excluding versions not likely to fix errors.

A third challenge is posed by transitive dependencies, which are
not explicitly included in a project but are required by a project
dependency or other transitive dependencies. The inclusion of a
transitive dependency cannot be detected from the source code
of a project, and can only be inferred from the build logs of the
installation process. Transitive dependencies also give rise to de-
pendency chains (explained in Section 2.3) that contribute to the
expansion of the search space. Due to the expensive nature of eval-
uating patch candidates (Algorithm 2) and the inclusion of a large
number of transitive dependencies (Section 3.1), it is imperative
to identify problematic dependency chains for the practicality and
time efficiency of our approach.

To the best of our knowledge, PyDFix is the first to address all
above challenges for large Python projects, and be evaluated on a
large and wide-ranging set of builds.

4 TECHNICAL APPROACH

PyDFix is shown in Figure 5. The two main components are LogEr-
rorAnalyzer for identifying dependency-related errors causing

443

ISSTA ’21, July 11–17, 2021, Virtual, Denmark Suchita Mukherjee, Abigail Almanza, and Cindy Rubio-González

Figure 5: PyDFix workflow

unreproducibility, and IterativeDependencySolver for fixing un-
reproducible builds due to dependencies. PyDFix takes as input the
current build log and the original build log. PyDFix first identifies
dependency errors and possible dependency packages causing these
errors using LogErrorAnalyzer. This is followed by iteratively
building a patch that makes the build reproducible again by Itera-

tiveDependencySolver. The iterative algorithm for building the
patch re-runs the build with intermediate patches and analyzes the
new build logs produced to further identify errors and problematic
dependency version specifications. This process continues until the
build becomes reproducible, or all patch options have been tested
and deemed not useful. The key challenges addressed by PyDFix

are the identification of dependency-related unreproducible builds
from build logs, and the selection of both project and transitive de-
pendencies along with their appropriate versions to fix dependency
errors and test failures. We expect PyDFix to be of great value for
maintainers of bug datasets as well as developers attempting to
reproduce a historical build. The rest of this section provides further
technical details.

4.1 Log Error Analyzer

The first step in solving dependency-related build breakage is the
identification and localization of build errors. Build tools like Gradle
for Java may have pre-defined sections in the build logs ("What
went wrong") where error messages and exceptions are collected.
However, not all Python applications need or have build tools.
Hence, while analyzing Python build logs we cannot depend on
any pre-defined section of log messages showing the reasons for
build failure. LogErrorAnalyzer analyzes build logs to extract
the following information:

(1) What are the lines indicating errors due to dependency pack-
ages, and are these errors absent in the original build?

(2) What are the dependency packages that cause these errors?
(3) What files lead to the inclusion of these dependency packages

in the project?

Table 1: Subset of log error regex patterns

Error Pattern

requirements\.txt needs (.*) python
The command "pip3? install(.*)failed and exited with(.*)
Command "python3? setup\.py egg_info" failed
The command "python3? (.*) failed and exited (.*)
virtualenv\.py: error
(.*) requires a different Python (.*)
No module named (.*)
ImportError (.*)
ModuleNotFoundError: (.*)
(.*) : command not found

4.1.1 Error Patterns. To understand which error messages in a
build log indicate failure related to dependency packages, we manu-
ally inspected the build logs of 40 unreproducible artifacts from the
BugSwarm dataset, which led to the identification of 20 different
error messages. Based on these error messages, we created 17 regex
patterns, 10 of which are shown in Table 1.

The error patterns in Table 1 indicate that dependency errors are
related to the failure of pip install, failure to setup Python egg, a
package or dependency file requiring a different Python version, an
error from a virtual environment, ImportError and TypeError. An
additional indication of an incorrect version installation appeared to
be code style checks failing. For example, flake8 is a PyPI package
that keeps adding new code style rules with every new version.
However, older artifacts that use flake8 to check for code style
issues may not be compliant with newer rules in the latest version of
flake8. In such a case, flake8 needs to be pinned to an appropriate
version and hence, we have included errors from such code style
checking packages into our list of dependency-related errors.

4.1.2 Installation Patterns. Based on the log inspection from Sec-
tion 4.1.1, we also created a set of regex patterns to identify package
installation messages in build logs. The installation patterns are
shown in Table 2. These patterns are used by LogErrorAnalyzer

444

Fixing Dependency Errors for Python Build Reproducibility ISSTA ’21, July 11–17, 2021, Virtual, Denmark

Table 2: List of log patterns for package installation

Package Installation Pattern

^Collecting(.*)
^Searching(.*)
^Downloading(.*)
^Requirement already satisfied:(.*)
^Best Match(.*)

to answer questions (2) and (3). In particular, the analyzer tracks:
(i) required packages, (ii) package versions fetched and installed,
(iii) whether a package is a transitive dependency in which case
the analyzer also extracts the dependency chain, and (iv) files in
which the dependencies are specified.

4.1.3 Extracting Candidate Packages for Fix. Algorithm 1 shows
how LogErrorAnalyzer parses build logs to extract information
required to address the errors of an unreproducible Python build.
LogErrorAnalyzer iterates over each line of the current log for
which the build is unreproducible. The analyzer looks to match
error patterns (Section 4.1.1) and installation patterns (Section 4.1.2).
For every match against an installation pattern, further package
details are extracted such as pinned version, version constraints,
and transitive dependency chain, after which the package is added
to the set of installed packages.

When an error pattern is matched, the analyzer first checks
whether the same error (and error trace) already exists in the origi-
nal log (Algorithm 1 Lines 10-16). If that is the case, then the error is
discarded and not considered to be a new error contributing to the
unreproducible state of the build. For errors not found in the origi-
nal logs, the error message itself and the associated error trace is
parsed to extract packages associated with the error. The detailed in-
formation about the error-related dependency packages is collected
from the already gathered information on installed packages and
these are added to the possible candidates for a fix. If any of these
packages are transitive dependencies, then all packages appearing
in its dependency chain are also considered possible candidates.

If an identified error trace is not associated with any known error
pattern, and the error does not exist in the original log, then the
trace is still parsed and analyzed to extract mentions of dependency
packages. Finally, the last installed package before the build error
occurred is also included in the possible candidates since it is highly
likely that the error occurred during the installation of that package.

LogErrorAnalyzer arranges the candidate packages in a pri-
ority order used by IterativeDependencySolver (Section 4.2.2)
when applying candidate patches. The order is described as follows:

(1) The dependency package mentioned in the error line itself.
(2) Dependency packages listed in the error trace associated

with the error line, with priority decreasing with further
distance from the error line.

(3) Dependency packages listed in an error trace not associated
with any of the recognized error patterns, with decreasing
priority as we go down the error frames of the trace.

(4) The dependency installed right before the error occurred.

Algorithm 1: LogErrorAnalyzer

Data: Dependency error regex, Package installation regex
Input: Current build log, TravisCI original build log
Output: Dependency errors, Candidate dependency packages,

Dependency files
1 installed ← [], candidates ← []

2 errorLines ← [], f ileNames ← []

3 for each line in log do

4 if line matches package installation regex then

5 pkдInf o ← package details extracted from line

6 installed .insert (packaдeInf o)

7 if f ileName present in line then

8 f ileNames .insert (f ileName)

9 end

10 else if line matches dependency error regex and error not in

original log then

11 errorLines .insert (line)

12 pkдNames ← package names in error trace

13 pkдInf oList ←

packages in pkдNames from installed

14 candidates .insert (pkдInf oList)

15 else if line shows start of an error trace and error trace not

in original log then

16 pkдNames ← package names in error trace

17 pkдInf oList ←

packages in pkдNames from installed

18 candidates .insert (pkдInf oList)

19 end

20 orderPossibleCandidatesByPriority (candidates)

21 return errorLines , candidates , f ileNames

4.2 Iterative Dependency Solver

Once LogErrorAnalyzer has identified the possible candidates
and their priorities, the IterativeDependencySolver shown in
Algorithm 2 generates patch candidates for each possible candi-
date and adds them to the dependency requirements of the build
according to the prioritized order. In every iteration, a previously
unapplied patch candidate is added to the final accepted patch or
discarded based on the build outcome. Thus, pinned dependencies
are incrementally added to the final accepted patch until encoun-
tering either one of the terminal states in Table 3 (Section 4.2.3), or
a non-dependency error. Based on each iteration’s build outcome,
new candidates are found by analyzing the build log generated after
applying the current patch.

4.2.1 Generating Patch Candidates. As shown inAlgorithm 2 (Lines
1 and 32), patch candidates are generated at the beginning, and again
every time the patch candidates need to be updated due to new
possible candidates. The patch generation function identifies one or
more suitable versions of the dependencies included in the possible
candidates list. The criterion for a suitable version based on version
specification is as follows:

• ForUnconstrainedDependencies, the latest version available
before the date of the triggering commit of the build.

445

ISSTA ’21, July 11–17, 2021, Virtual, Denmark Suchita Mukherjee, Abigail Almanza, and Cindy Rubio-González

Algorithm 2: IterativeDependencySolver

Input: buildDetails, errors, candidates
Output: A patch that pins dependencies

1 patchCandidates = дenPatches (candidates)

2 acceptedPatch ← [], currentPatch ← [],

f ixOutcome = None

3 while True do

4 currentPatch = acceptedPatch

5 newPatchCandidate = None

/* Patch Candidate Selection */

6 newPatchCandidate ←

дetUnappliedPatch(patchCandidates,acceptedPatch)

7 if newPatchCandidate == None then
/* Encountered terminal state */

8 f ixOutcome ← Exhausted All Options

9 break

/* Patch Candidate Application */

10 newBuildOutcome,newBuildLoд ←

runBuild Job (currentPatch,buildDetails)

/* Patch Impact Evaluation */

11 if newBuildOutcome == SUCCESSFUL then
/* Encountered terminal state */

12 acceptedPatch ← currentPatch

13 f ixOutcome ← Successfully Fixed Build

14 break

15 else if newBuildOutcome == ORIGINAL_LOG_ERROR

then
/* Encountered terminal state */

16 acceptedPatch ← currentPatch

17 f ixOutcome ← Restored to Original Error

18 break

19 else if newBuildOutcome == NO_CHANGE then
/* Discard new patch candidate */

20 continue

21 else if newBuildOutcome == DIFFERENT_ERROR then

22 errorType,newErrors,newCandidates ←

runLoдErrorAnalyzer (newBuildLoд)

23 if errorType ! =

DEPENDENCY_ERROR or no newCandidates then
/* Encountered terminal state */

24 f ixOutcome = No longer a dependency error

25 break

26 else if newCandidates[0] == newPatchCandidate

then

27 continue /* Discard new patch candidate */

28 else
/* Patch Candidates Elimination */

29 candidates ← newCandidates

30 errors ← newErrors

31 acceptedPatch ← currentPatch

32 patchCandidates ← дenPatches (candidates)

33 end

34 return f ixOutcome,acceptedPatch

• For Constrained Dependencies, the latest version available
that satisfies the given constraints and was released before the
date of the triggering commit. If such a version is not available,
the latest available version is used.
• For Pinned Dependencies, the latest version available except
the version originally pinned which was released before the
date of the triggering commit. An additional patch candidate is
created with the latest available version of the package and is
given lower priority.
• For Transitive Dependencies, the above rules apply to tran-
sitive dependencies based on the specification type. Similarly,
additional patch candidates are created for all packages included
in the dependency chain of transitive dependencies, the highest
priority given to the dependency preceeding the broken depen-
dency in the chain.

For fetching the version history of the packages, IterativeDe-
pendencySolver uses the PyPI JSON API to get all available ver-
sions and then applies the above conditions to find the best suited
versions for patch candidates.

4.2.2 Selecting and Applying Patch Candidates. The list of patch
candidates is sorted by priority according to the rules described
in Section 4.2.1. In every iteration, the first patch candidate in the
list of candidates that has not been applied yet is added to the
current patch (Algorithm 2, Line 6). If all patches have been applied
and discarded, the IterativeDependencySolver can no longer
proceed and returns the current patch with the status "Exhausted
All Options" (Algorithm 2, Lines 7-9).

Before the iterative application of patches, a modification to the
build script is made such that patch dependencies are installed before
the installation of any other project dependencies. This is sufficient
to force the new version for originally constrained or unconstrained
dependencies. However, in the case of already pinned dependencies,
it is necessary to change the source code to replace the previous
pinned version with the version specified in the patch. After build
and source code modifications are completed, the build is run with
the current patch in a clean environment with no Python packages
installed. This is particularly important because the success of
the fix may depend on discarding some dependencies included in
previous patches as explained in Section 4.2.4.

One of the goals when repairing unreproducible software arti-
facts is tominimize the number of changesmade to the existing code
and configuration. Unnecessary changes to a project’s dependency
specifications can cause unprecedented errors while not resolving
the original cause of unreproducibility. Thus, an approach which
pins all unpinned dependencies to versions the original build uses
(if available) may introduce additional security vulnerabilities and
bugs through dependencies that did not need to be fixed. Further-
more, the correct patch for a build may change over time due to the
ever changing nature of dependency packages. In general, breakage
due to dependencies can occur at any time, and fewer changes can
facilitate debugging. Moreover, for a purpose similar to our study,
users may wish to check the reproducibility of a build without any
modifications and juxtapose it against the fix outcome using the
patch. In such a case a patch applied with minimum source code
editing can be helpful.

446

Fixing Dependency Errors for Python Build Reproducibility ISSTA ’21, July 11–17, 2021, Virtual, Denmark

Table 3: Fix outcomes

Fix Outcome Fix Status

Successfully Fixed Build Complete Fix
Restored to Original Error Complete Fix
No longer recognized as Dependency Error Partial Fix
Exhausted All Options Partial Fix

4.2.3 Evaluating Patch Impact. After the patched build is run, the
log status is checked (Algorithm 2, Lines 11, 15, 19 and 21) and the
algorithm either exits with one of the fix outcomes in Table 3, or
proceeds to the next iteration. If the build is successful, the cur-
rent patch is accepted as final and IterativeDependencySolver

exits with the outcome "Successfully Fixed Build" which is consid-
ered to have restored reproducibility and labeled as a Complete Fix

(Algorithm 2, Lines 11-14). If the current patch makes the build
terminate with the same error as in the original build log, the fix
outcome is "Restored to Original Error" which is also a Complete

Fix (Algorithm 2, Lines 15-18).
On the other hand, if the build error remains unchanged, the

last dependency package added to the patch is rejected and the
next iteration starts. If a new build error is encountered, Itera-
tiveDependencySolver runs LogErrorAnalyzer to analyze the
new build log. If LogErrorAnalyzer outputs no identified depen-
dency errors, the algorithm outputs the current patch as the final
patch and the outcome "No longer recognized as Dependency Error"
(Algorithm 2, Lines 23-25). In the case when the highest priority
possible candidate is the same dependency that was added to the
patch in the current iteration, the algorithm decides that the added
dependency has caused the new error and removes it from the patch
(Algorithm 2, Line 27). Otherwise, the current patch list is accepted
as the correct one so far. If none of the new patch candidates are
found to change the dependency related error and are discarded,
IterativeDependencySolver exits with the outcome "Exhausted
All Options" (Algorithm 2, Lines 7-9). Both the outcomes "No longer
recognized as Dependency Error" and "Exhausted All Options" are
considered to be Partial Fixes if the patches associated with these
fixes are non-empty.

4.2.4 Elimination of Patch Candidates. When IterativeDepen-

dencySolver reaches a build outcome that still contains a depen-
dency error that is not caused by the last added patch, it eliminates
all remaining patch candidates in the current list of patch candi-
dates (Algorithm 2, Lines 29-32). The possible candidates that are
identified by LogErrorAnalyzer from the current build log are
used for generating a new patch candidate list, which constitutes
the search space for subsequent iterations.

5 EXPERIMENTAL EVALUATION

This experimental evaluation is designed to answer the following
research questions:

RQ1 How many Python builds become unreproducible over time
due to dependency errors?

RQ2 How effective is PyDFix in fixing dependency errors to re-
store unreproducible builds to reproducible status?

Experimental Setup. To evaluate our approach to fix unrepro-
ducible builds by fixing dependency errors, we use the software
artifacts from two bug datasets built from real-world open-source
projects:BugSwarm [37] andBugsInPy [41]. TheBugSwarm dataset
version 1.1.3 contains 1,292 Python artifacts from 56 unique open-
source projects, each artifact is a fail-pass build pair whose source
code and build scripts are packaged in a Docker container. BugsInPy
consists of 501 Python artifacts from 17 open-source projects, each
having a buggy and fixed commit pair, with the buggy commit
causing test failures and the fix commit passing those same tests.
In the end, 1,351 artifacts were eligible for our study: 1,053 from
BugSwarm, and 298 from BugsInPy. Each artifact includes two
builds, thus a total of 2,702 builds were considered in this evaluation:
2,106 from BugSwarm and 596 from BugsInPy.

Both the BugSwarm and BugsInPy datasets have measures in
place to maintain reproducibility. For BugSwarm, we noticed some
differences from the original source code: some dependencies have
been pinned. Similarly, BugsInPy artifacts include a dependency
specification file that lists manually pinned dependency packages.
These measures would interfere with our evaluation in determining
reproducibility of the original build, and the actual effectiveness of
PyDFix. To avoid this problem, we used the original code obtained
from GitHub instead of the code available through BugSwarm and
BugsInPy. This led to the exclusion of 239 BugSwarm artifacts
whose source code is no longer available on GitHub.

For BugsInPy, we used the setup and test information provided
as a part of themetadata for each artifact to generate a .travis.yml
file. We then used the generated YAML file to create a build script
using travis-build [15], as done by the BugSwarm infrastruc-
ture [37]. We locally ran the build on the source code fetched from
GitHub repositories. We had to omit 203 BugsInPy artifacts that
did not contain setup instructions, and thus could not be built.

To identify whether a build is reproducible, LogErrorAnalyzer
requires the original build logs. BugSwarm artifacts are mined
from TravisCI [16] history, and each artifact includes the origi-
nal build logs in its Docker image. BugsInPy artifacts do not in-
clude any build information and thus original build logs are not
available for the dataset. To overcome this, we used the logs gener-
ated by running the BugsInPy commands i.e., bugsinpy-checkout,
bugsinpy-compile and bugsinpy-test on the modified source
(with pinned dependencies) as a substitute for original logs.

State-of-the-art tools that fix Python dependency errors, such as
V2 [30] and DockerizeMe [29], are not a suitable baseline for PyD-
Fix. Both work on Python gists and V2 also works on notebooks,
but not on entire applications. In fact, V2’s evaluation excluded all
gists with 10 or more direct dependencies to restrict the number of
solutions. PyDFix’s goal is to restore reproducibility of a build for an
application, and it can handle hundreds of direct (and transitive) de-
pendencies. PyDFix is publicly available at https://github.com/ucd-
plse/PyDFix. All experiments were run on a workstation with 88
Intel(R) Xeon(R) Gold 2.10GHz CPUs and 384 GB of RAM.

5.1 Evaluation of Dependency Error Impact

In Section 3 we observed that the use of dependency packages is
widespread in Python projects, and that many projects have a sig-
nificant number of unpinned dependencies. However, not all builds

447

https://github.com/ucd-plse/PyDFix
https://github.com/ucd-plse/PyDFix

ISSTA ’21, July 11–17, 2021, Virtual, Denmark Suchita Mukherjee, Abigail Almanza, and Cindy Rubio-González

become unreproducible due to dependency errors, and not all cases
of unreproducibility are due to dependency packages. As explained
in Section 3.2, there can be a number of different reasons for un-
reproducible builds and in this study we focus on identification of
builds that have become unreproducible due to dependency errors.
For this purpose, we use LogErrorAnalyzer to analyze current
build logs of artifacts from BugSwarm and BugsInPy datasets using
the approach presented in Section 4.1.

LogErrorAnalyzer takes the original and current build logs as
input for each build to be analyzed and produces a list of depen-
dency errors found, a list of possible candidate dependencies, and
identified dependency specification files. We analyzed a total of
2,106 and 596 builds from BugSwarm and BugsInPy, respectively.
As shown in Table 4, LogErrorAnalyzer identified 1,415 (67.2%)
BugSwarm builds and 506 (84.9%) BugsInPy builds as having de-
pendency errors not present in the original log that cause the builds
to be unreproducible. Table 5 shows the distribution of builds across
the top 5 error patterns identified. Note that each build log may
contain multiple errors that match different error patterns.

From the identification results of LogErrorAnalyzer, we see
that without the measures taken in BugSwarm and BugsInPy to
maintain reproducibility, a large number of builds from open-source
Python projects encounter dependency-related errors that did not
occur at the time of the original build. It is evident that manually
repairing so many builds affected by different kinds of dependency
errors is extremely time consuming. Furthermore, resolving er-
rors from transitive dependencies may require domain knowledge.
For example, on inspecting the possible package candidates sug-
gested by LogErrorAnalyzer, we find that 324 and 90 identified
builds from BugSwarm and BugsInPy respectively include at least
one transitive dependency in their possible candidate sets. This
observation further emphasizes the need for automated fixing of
unreproducible builds due to dependency errors.

To evaluate the precision of LogErrorAnalyzer, we manually
inspected 100 builds chosen at random: 50 builds that were reported
by LogErrorAnalyzer to be unreproducible due to dependency
errors, and 50 builds that were not reported. Out of the inspected
reported builds, 16 (32%) were identified as false positives: the
builds had an underlying cause for unreproducibility other than
dependency errors. The most common source of false positives was
errors due to the unavailability of required environment variables
leading to failure of setup steps or Python commands in a build.
False negatives, which is the failure to flag a build as unreproducible
due to dependency errors, can occur because the error pattern set
used by LogErrorAnalyzer is non-exhaustive. However, we did
not find any missing error pattern while inspecting the set of 50
non-reported builds.

RQ1 Answer: For BugSwarm, out of 2,106 builds analyzed,
1,415 (67.2%) were identified as having dependency errors. For
BugsInPy, out of 596 builds analyzed, 506 (84.9%) were found
to have dependency errors. This shows that breakage due to
dependencies is quite common. Further manual inspection on
a subset of builds revealed a false-positive rate of 32% while
no false negatives were found.

Table 4: Builds identified. Columns "#Available" and "#Ana-

lyzed" show the total number of builds in the datasets and

the number of builds analyzed. Column "# Identified" shows

the number and percentage of builds identified byPyDFix as

no longer reproducible due to dependency errors.

Dataset # Available # Analyzed # Identified

BugSwarm 2,584 2,106 1,415 (67.2%)
BugsInPy 1,002 596 506 (84.9%)

Total 3,586 2,702 1,921 (71.1%)

Table 5: Distribution of builds in top 5 error patterns. Col-

umn "Pattern" shows the error pattern identified and "#

Builds" show the total number of builds in which the pat-

tern has been identified.

Error Pattern Description # Builds

The command "pip3? install(.*)failed and exited with(.*) 711
Command "python3? setup\.py egg_info" failed 502
No module named (.*) 322
ImportError (.*) 255
(.*) requires a different Python (.*) 214

Table 6: PyDFix results. "Identified" shows number of builds

to be fixed. "Complete Fix" and "Partial Fix" give the builds

that were made reproducible, and those that although still

unreproducible had some dependency errors resolved.

Patch Result Identified Complete Fix Partial Fix

BugSwarm 1,415 578 (40.9%) 453 (32.1%)
BugsInPy 506 281 (55.5%) 179 (35.4%)

Total 1,921 859 (44.7%) 632 (32.9%)

5.2 Evaluation of Dependency Error Fixing

We ran PyDFix on the unreproducible builds identified by LogEr-

rorAnalyzer as dependency related: 1,415 and 506 builds from
BugSwarm and BugsInPy, respectively. Table 6 shows the results.
The patches under "Complete Fix" were successful in making the
build reproducible. Patches under "Partial Fix" were not entirely
successful but resolved some dependency errors. For BugSwarm,
PyDFix was successful in providing complete fixes for 578 (40.9%),
and partial fixes for 453 (32.1%) of 1,415 identified builds. While for
BugsInPy, PyDFix found complete fixes for 281 (55.5%), and partial
fixes for 179 (35.4%) out of 506 identified builds. Overall, PyDFix
was able to create complete fixes for 859 (44.7%) and partial fixes
for an additional 632 (32.9%) of the identified builds. Among the
partial fixes, 204 are no longer dependency-related errors while 428
still contained dependency errors but PyDFix has no more patch
candidates to explore.

We also analyzed the dependencies included in the patches com-
puted by PyDFix for BugSwarm builds. Table 7 shows that a total
of 2,497 dependency packages are found in patches, with the largest

448

Fixing Dependency Errors for Python Build Reproducibility ISSTA ’21, July 11–17, 2021, Virtual, Denmark

Table 7: BugSwarm patch metrics. Dependency types are

broken into: (1) Unconstrained, Constrained and Pinned,

and (2) Project and Transitive. łAllž gives the number of

dependencies included in patches for each kind. Columns

łCompletež and łPartialž list complete and partial fixes,

łMaxž and łAveragež show the maximum and average num-

ber of dependencies in a patch.

Dependency Type All Complete Partial Max Average

Unconstrained 1,031 577 454 11 0.99
Constrained 1,068 436 632 18 1.03
Pinned 398 175 223 9 0.38

Project 1,780 815 965 14 1.71
Transitive 717 373 344 16 0.68

Total 2,497 1,188 1,309 22 2.40

patch including 22 dependencies. This showcases how time consum-
ing and difficult it can be to manually resolve an unreproducible
build with multiple dependency errors. On average, a patch includes
2.4 dependencies. Among all patches, PyDFix pins correct versions
of 1,031 originally unconstrained, 1,068 constrained, and 398 pinned
dependencies. The smaller number of pinned dependencies show
that these cause less dependency-related errors as compared to con-
strained and unconstrained dependencies. Out of the total number
of dependencies, 1,780 are project dependencies, and 717 are tran-
sitive dependencies, which illustrates the importance of handling
transitive dependencies in fixing dependency errors.

An interesting observation from these results is that PyDFixwas
successful in automatically finding the correct patch for the prob-
lem described in Section 2.2. While patching builds from the same
Python projects, PyDFix computed similar patches. For example,
for 70 complete patches computed by PyDFix for builds from the
project numpy, 64 of these patches required version pinning for the
same packages. However, for builds from different projects we do
not see repetitions of many packages across patches.

Note that IterativeDependencySolver avoids false positives
(cases where successful fix outcomes do not actually fix repro-
ducibility) by ensuring that the final patch is non-empty, and the
build outcome and test results match the original logs. On the other
hand, PyDFix does suffer from false negatives (failure to fix de-
pendency errors). We manually inspected 50 builds from the 430
builds (22.4%) for which PyDFix could not produce a successful
patch. We found that 34 (68%) of the inspected builds had legiti-
mate dependency errors causing unreproducibility. The remaining
32% of builds were incorrectly identified as dependency errors by
LogErrorAnalyzer and hence, could not be fixed by PyDFix. One
of the reasons observed for false negatives is the failure to iden-
tify the correct package dependency causing the error. In some
builds, dependency errors exist due to the removal of an entire
package from the PyPI index, as it was the case for the package
pytest-capturelog discussed in Section 2.1.

Performance of PyDFix. Due to the large number of builds to
process, serial execution was extremely time consuming. Since the
processing of each build is independent of each other, PyDFix was

implemented using Python multiprocessing. The average, median
and maximum time taken by PyDFix to fix a build is 70.6, 16.1 and
414.1 minutes, respectively. Note that PyDFix’s runtime is highly
impacted by the runtime of each build and its associated tests.

RQ2 Answer: Out of 1,415 BugSwarm builds, PyDFix found
a complete fix for 578 (40.9%) and a partial fix for 453 (32.1%)
builds. For BugsInPy, out of 506 identified builds, 281 (55.5%)
builds were made reproducible while 179 builds (35.4%) were
partially fixed. The average and median time PyDFix required
to fix artifacts are 70.6 and 16.1 minutes, respectively.

6 THREATS TO VALIDITY

PyDFix is evaluated on 2,702 builds from two state-of-the-art Python
bug datasets, BugSwarm and BugsInPy, which are built from 56
and 17 open-source Python projects, respectively. Thus, although
the number of builds is large, the variety of projects is still limited.
Moreover, the set of error messages that we have compiled and used
in LogErrorAnalyzer is not inclusive of all types of build errors
that may arise from dependency issues. Builds from a more wide
variety of Python projects may suffer from dependency errors that
are not included in our set. Note that such errors could be easily
added to PyDFix, which would improve its effectiveness. There
also exists the possibility that changing a version specification of a
dependency may resolve build errors but changes application be-
havior. We address this concern by taking into account the results of
tests included in the build to ensure consistent application behavior.
But in doing so, we are dependent on the thoroughness of the tests
included in the build. Finally, the cause of unreproducibility in a
build may change over time and not all causes of unreproducibility
are dependency-related. While the approach presented in PyDFix

is aimed at handling the changing nature of unreproducible builds,
we recognize that this may cause future evaluations of PyDFix to
differ from this paper. For this reason, we have maintained detailed
records of the original experiments to demonstrate PyDFix’s effec-
tiveness at the time of writing. Our data and source code can be
found at https://github.com/ucd-plse/PyDFix.

7 RELATED WORK

Reusable Research Objects. Sciunit [36] and ReproZip [21]
focus on a preventive approach to reproducibility by capturing re-
quirements and configurations while the application is still running
and before distribution of the artifact. Our approach focuses on ad-
dressing builds that have become unreproducible and PyDFix only
requires the original build log for gathering information instead of
requiring the artifact to be functional.

Automatic Build Repair. BuildMedic [33] is a tool to auto-
matically repair dependency-related build breakages for Maven
builds in Java projects. Similar to PyDFix, BuildMedic also uses a
set of regular expressions to extract build outcome and details from
build logs and iteratively apply repair plans to fix the build. How-
ever, BuildMedic is not focused on reproducibility of builds, and
only tries to repair failed builds. BuildMedic also skips running
tests associated with the build, while the results of tests is an impor-
tant factor in evaluating PyDFix’s success. The authors do not take

449

https://github.com/ucd-plse/PyDFix

ISSTA ’21, July 11–17, 2021, Virtual, Denmark Suchita Mukherjee, Abigail Almanza, and Cindy Rubio-González

into account that their build fixes may alter application behaviour,
which tests expose. This is especially important since only 36% of
BuildMedic’s repairs are identical to developer-performed repairs.
The focus of BuildMedic is emphasized by their investigation of
developers’ fixing strategies while our study investigates the usage
patterns of dependency packages, their version specifications and
their impact on reproducibility of builds.

HireBuild [26] uses historical build fix information to generate
patches for build scripts that have led to similar kinds of build failure.
HoBuff [32] utilizes the current information present in build logs
to extract error information, followed by fault localization using
dataflow analysis to generate patches. Neither of these tools address
the reproducibility of the builds they fix, and their approaches are
designed for Java projects that use the Gradle build system’s logging
structure. PyDFix cannot benefit from such specifics in the build
logs because most Python applications do not need or use build
tools, and ensures that the build outcome is reproducible.

Inferring Environment Dependencies. DockerizeMe [29] is
a technique for inferring environment dependencies of a Python
code snippet to resolve ImportErrors using an offline knowledge
base of Python packages in the PyPI index. DockerizeMe has the
limitation of having only ImportErrors within its scope while de-
pendency errors can cause varied and complex issues as seen by
error patterns used by PyDFix. V2 [30], an extension of Docker-
izeMe, identifies out-of-date code snippets by detecting configura-
tion drift. Both tools focus on Python dependency issues similar to
our approach, but they can only be used for code snippets and V2

additionally works on Jupyter notebooks. Moreover, V2 excluded
all code snippets having more than 10 dependencies from their
evaluation to restrict the number of possible solutions. In contrast,
PyDFix works on builds from real-world Python applications and
thus is capable of resolving more complex dependency problems
and handling a large number of dependencies.

Dependency Graphs and Ecosystems. VeriBuild [25] uses a
unified dependency graph (UDG) to solve the problem of missing
or redundant dependencies in build scripts. However, VeriBuild
only addresses discrepancies between dependencies of build targets
while PyDFix fixes unreproducibility of builds caused by incompat-
ible dependency package versions. Recent work [24, 27, 31] provide
insightful information about dependency packages used in sev-
eral programming languages other than Python, their networks,
evolution and impact. Decan et al. [23] compare and contrast the
component dependency graphs of the Python, Javascript and R
ecosystems. Valiev et al. [38] present a study of PyPI to understand
ecosystem-level factors affecting the sustainability of open-source
Python projects. In contrast to the aforementioned studies, our
work does not focus on understanding dependency networks and
ecosystems, but on exploring the widespread use of Python depen-
dency packages and their impact in reproducibility.

Other Dependency Issues. Watchman [40] addresses the prob-
lem of dependency conflicts arising in PyPI ecosystem and is de-
signed to help the developer community detect and predict depen-
dency conflicts and also generate diagnostic information to help fix
these issues. However, this tool does not work on the dependency

requirements of individual builds, and thus cannot fix unrepro-
ducibility in builds caused by dependency packages. Abate and
Cosmo [19] propose an algorithm to predict operational failures
in a system introduced by the upgrade of a single component. The
algorithm analyzes inter-component dependencies to predict con-
sequences of an upgrade and applies this technique to the Debian
distribution. This algorithm has a pre-emptive approach to failures
caused by components while PyDFix addresses the unreproducibil-
ity once it has already been caused by dependency errors.

8 CONCLUSION

Dependencies find widespread use in open-source Python projects.
We investigated the impact of dependency package usage on un-
reproducibility of builds and propose PyDFix to identify and fix
unreproducible builds due to dependency errors. PyDFixwas evalu-
ated on two Python bug datasets, BugSwarm and BugsInPy, which
are built from real-world open-source projects. PyDFix analyzed
2,702 builds in total, identifying 1,921 (71.1%) of them to be unrepro-
ducible due to dependency errors. Out of these, PyDFix computed
complete fixes for 859 (44.7%) builds, and partial fixes for an addi-
tional 632 (32.9%) builds. In the future, we would like to automate
the process of extracting error patterns for dependencies, which
would improve our identification of unreproducible builds due to
dependency errors, and the precision of PyDFix at identifying can-
didate dependencies.

ACKNOWLEDGMENTS

This work was supported by the National Science Foundation under
award CNS-2016735. We would like to thank Aditya V. Thakur and
Premkumar T. Devanbu for providing feedback on earlier drafts of
this paper. We also thank Erin M. Winter and Ryan Jae for their
help replicating the experiments conducted in this study.

REFERENCES
[1] Accessed 2021. cloudify-system-tests triggering commit.

https://github.com/cloudify-cosmo/cloudify-system-tests/tree/
bf27ad94b2fb11183beb2f374f5eb06b7af31bdf.

[2] Accessed 2021. Conda. https://docs.conda.io/en/latest/.
[3] Accessed 2021. configparser. https://pypi.org/project/configparser/.
[4] Accessed 2021. Docker. https://www.docker.com/.
[5] Accessed 2021. flake8. https://pypi.org/project/flake8/.
[6] Accessed 2021. Kubernetes. https://kubernetes.io/.
[7] Accessed 2021. Maven Central Repository. https://repo1.maven.org/maven2/.
[8] Accessed 2021. pip. https://pypi.org/project/pip/.
[9] Accessed 2021. pyatom versions. https://libraries.io/pypi/pyatom/versions.
[10] Accessed 2021. pyenv. https://pypi.org/project/pyenv/.
[11] Accessed 2021. pytest-capturelog. https://libraries.io/pypi/pytest-capturelog.
[12] Accessed 2021. Python Package Index. https://pypi.org/.
[13] Accessed 2021. stevedore. https://pypi.org/project/stevedore/.
[14] Accessed 2021. tox. https://pypi.org/project/tox/.
[15] Accessed 2021. travis-build. https://github.com/travis-ci/travis-build.
[16] Accessed 2021. Travis CI. https://travis-ci.org/.
[17] Accessed 2021. What Is Pip? A Guide for New Pythonistas. https://realpython.

com/what-is-pip/.
[18] Accessed 2021. What’s New In Python 3.0. https://docs.python.org/3/whatsnew/

3.0.html.
[19] Pietro Abate and Roberto Di Cosmo. 2011. Predicting upgrade failures using

dependency analysis. In Workshops Proceedings of the 27th International Con-
ference on Data Engineering, ICDE 2011, April 11-16, 2011, Hannover, Germany,
Serge Abiteboul, Klemens Böhm, Christoph Koch, and Kian-Lee Tan (Eds.). IEEE
Computer Society, 145ś150. https://doi.org/10.1109/ICDEW.2011.5767626

[20] Bente Anda, Dag I. K. Sjùberg, and Audris Mockus. 2009. Variability and Re-
producibility in Software Engineering: A Study of Four Companies that De-
veloped the Same System. IEEE Trans. Software Eng. 35, 3 (2009), 407ś429.

450

https://github.com/cloudify-cosmo/cloudify-system-tests/tree/bf27ad94b2fb11183beb2f374f5eb06b7af31bdf
https://github.com/cloudify-cosmo/cloudify-system-tests/tree/bf27ad94b2fb11183beb2f374f5eb06b7af31bdf
https://docs.conda.io/en/latest/
https://pypi.org/project/configparser/
https://www.docker.com/
https://pypi.org/project/flake8/
https://kubernetes.io/
https://repo1.maven.org/maven2/
https://pypi.org/project/pip/
https://libraries.io/pypi/pyatom/versions
https://pypi.org/project/pyenv/
https://libraries.io/pypi/pytest-capturelog
https://pypi.org/
https://pypi.org/project/stevedore/
https://pypi.org/project/tox/
https://github.com/travis-ci/travis-build
https://travis-ci.org/
https://realpython.com/what-is-pip/
https://realpython.com/what-is-pip/
https://docs.python.org/3/whatsnew/3.0.html
https://docs.python.org/3/whatsnew/3.0.html
https://doi.org/10.1109/ICDEW.2011.5767626

Fixing Dependency Errors for Python Build Reproducibility ISSTA ’21, July 11–17, 2021, Virtual, Denmark

https://doi.org/10.1109/TSE.2008.89
[21] Fernando Chirigati, Rémi Rampin, Dennis E. Shasha, and Juliana Freire. 2016.

ReproZip: Computational Reproducibility With Ease. In Proceedings of the 2016
International Conference on Management of Data, SIGMOD Conference 2016, San
Francisco, CA, USA, June 26 - July 01, 2016, Fatma Özcan, Georgia Koutrika, and
Sam Madden (Eds.). ACM, 2085ś2088. https://doi.org/10.1145/2882903.2899401

[22] Robert Collins. 2015. PEP 508 ś Dependency specification for Python Software
Packages. Retrieved January 23, 2021 from https://www.python.org/dev/peps/
pep-0508/

[23] Alexandre Decan, Tom Mens, and Maëlick Claes. 2016. On the topology of pack-
age dependency networks: a comparison of three programming language ecosys-
tems. In Proccedings of the 10th European Conference on Software Architecture
Workshops, Copenhagen, Denmark, November 28 - December 2, 2016, Rami Bahsoon
and Rainer Weinreich (Eds.). ACM, 21. http://dl.acm.org/citation.cfm?id=3003382

[24] Alexandre Decan, TomMens, and Philippe Grosjean. 2017. An Empirical Compar-
ison of Dependency Network Evolution in Seven Software Packaging Ecosystems.
CoRR abs/1710.04936 (2017). arXiv:1710.04936 http://arxiv.org/abs/1710.04936

[25] Gang Fan, Chengpeng Wang, Rongxin Wu, Xiao Xiao, Qingkai Shi, and Charles
Zhang. 2020. Escaping dependency hell: finding build dependency errors with
the unified dependency graph. In ISSTA ’20: 29th ACM SIGSOFT International
Symposium on Software Testing and Analysis, Virtual Event, USA, July 18-22,
2020, Sarfraz Khurshid and Corina S. Pasareanu (Eds.). ACM, 463ś474. https:
//doi.org/10.1145/3395363.3397388

[26] Foyzul Hassan and Xiaoyin Wang. 2018. HireBuild: an automatic approach to
history-driven repair of build scripts. In Proceedings of the 40th International
Conference on Software Engineering, ICSE 2018, Gothenburg, Sweden, May 27 - June
03, 2018, Michel Chaudron, Ivica Crnkovic, Marsha Chechik, and Mark Harman
(Eds.). ACM, 1078ś1089. https://doi.org/10.1145/3180155.3180181

[27] Joseph Hejderup, Arie van Deursen, and Georgios Gousios. 2018. Software
ecosystem call graph for dependency management. In Proceedings of the 40th
International Conference on Software Engineering: New Ideas and Emerging Results,
ICSE (NIER) 2018, Gothenburg, Sweden, May 27 - June 03, 2018, Andrea Zisman
and Sven Apel (Eds.). ACM, 101ś104. https://doi.org/10.1145/3183399.3183417

[28] Eric Horton and Chris Parnin. 2018. Gistable: Evaluating the Executability
of Python Code Snippets on GitHub. In 2018 IEEE International Conference on
Software Maintenance and Evolution, ICSME 2018, Madrid, Spain, September 23-29,
2018. IEEE Computer Society, 217ś227. https://doi.org/10.1109/ICSME.2018.00031

[29] Eric Horton and Chris Parnin. 2019. DockerizeMe: automatic inference of envi-
ronment dependencies for python code snippets. In Proceedings of the 41st Inter-
national Conference on Software Engineering, ICSE 2019, Montreal, QC, Canada,
May 25-31, 2019, Joanne M. Atlee, Tevfik Bultan, and Jon Whittle (Eds.). IEEE /
ACM, 328ś338. https://doi.org/10.1109/ICSE.2019.00047

[30] Eric Horton and Chris Parnin. 2019. V2: Fast Detection of Configuration Drift
in Python. In 34th IEEE/ACM International Conference on Automated Software
Engineering, ASE 2019, San Diego, CA, USA, November 11-15, 2019. IEEE, 477ś488.
https://doi.org/10.1109/ASE.2019.00052

[31] Riivo Kikas, Georgios Gousios, Marlon Dumas, and Dietmar Pfahl. 2017. Struc-
ture and evolution of package dependency networks. In Proceedings of the 14th
International Conference on Mining Software Repositories, MSR 2017, Buenos Aires,
Argentina, May 20-28, 2017, Jesús M. González-Barahona, Abram Hindle, and Lin
Tan (Eds.). IEEE Computer Society, 102ś112. https://doi.org/10.1109/MSR.2017.55

[32] Yiling Lou, Junjie Chen, Lingming Zhang, Dan Hao, and Lu Zhang. 2019. History-
driven build failure fixing: how far are we?. In Proceedings of the 28th ACM

SIGSOFT International Symposium on Software Testing and Analysis, ISSTA 2019,
Beijing, China, July 15-19, 2019, Dongmei Zhang and Anders Mùller (Eds.). ACM,
43ś54. https://doi.org/10.1145/3293882.3330578

[33] Christian Macho, Shane McIntosh, and Martin Pinzger. 2018. Automatically
repairing dependency-related build breakage. In 25th International Conference on
Software Analysis, Evolution and Reengineering, SANER 2018, Campobasso, Italy,
March 20-23, 2018, Rocco Oliveto, Massimiliano Di Penta, and David C. Shepherd
(Eds.). IEEE Computer Society, 106ś117. https://doi.org/10.1109/SANER.2018.
8330201

[34] Donald Stufft Nick Coghlan. 2013. PEP 440 ś Version Identification and Dependency
Specification. Retrieved January 23, 2021 from https://www.python.org/dev/
peps/pep-0440/

[35] Hyunmin Seo, Caitlin Sadowski, Sebastian G. Elbaum, Edward Aftandilian, and
Robert W. Bowdidge. 2014. Programmers’ build errors: a case study (at google).
In 36th International Conference on Software Engineering, ICSE ’14, Hyderabad,
India - May 31 - June 07, 2014, Pankaj Jalote, Lionel C. Briand, and André van der
Hoek (Eds.). ACM, 724ś734. https://doi.org/10.1145/2568225.2568255

[36] Dai Hai Ton That, Gabriel Fils, Zhihao Yuan, and Tanu Malik. 2017. Sciunits:
Reusable Research Objects. In 13th IEEE International Conference on e-Science, e-
Science 2017, Auckland, New Zealand, October 24-27, 2017. IEEE Computer Society,
374ś383. https://doi.org/10.1109/eScience.2017.51

[37] David A. Tomassi, Naji Dmeiri, Yichen Wang, Antara Bhowmick, Yen-Chuan
Liu, Premkumar T. Devanbu, Bogdan Vasilescu, and Cindy Rubio-González.
2019. BugSwarm: mining and continuously growing a dataset of reproducible
failures and fixes. In Proceedings of the 41st International Conference on Soft-
ware Engineering, ICSE 2019, Montreal, QC, Canada, May 25-31, 2019, Joanne M.
Atlee, Tevfik Bultan, and Jon Whittle (Eds.). IEEE / ACM, 339ś349. https:
//doi.org/10.1109/ICSE.2019.00048

[38] Marat Valiev, Bogdan Vasilescu, and James D. Herbsleb. 2018. Ecosystem-level de-
terminants of sustained activity in open-source projects: a case study of the PyPI
ecosystem. In Proceedings of the 2018 ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engi-
neering, ESEC/SIGSOFT FSE 2018, Lake Buena Vista, FL, USA, November 04-09,
2018, Gary T. Leavens, Alessandro Garcia, and Corina S. Pasareanu (Eds.). ACM,
644ś655. https://doi.org/10.1145/3236024.3236062

[39] Brandon Vigliarolo. 2020. Python overtakes Java to become the second-
most popular programming language. Retrieved January 24, 2021
from https://www.techrepublic.com/article/python-overtakes-java-to-become-
the-second-most-popular-programming-language/

[40] Ying Wang, Ming Wen, Yepang Liu, Yibo Wang, Zhenming Li, Chao Wang,
Hai Yu, Shing-Chi Cheung, Chang Xu, and Zhiliang Zhu. 2020. Watchman:
monitoring dependency conflicts for Python library ecosystem. In ICSE ’20:
42nd International Conference on Software Engineering, Seoul, South Korea, 27
June - 19 July, 2020, Gregg Rothermel and Doo-Hwan Bae (Eds.). ACM, 125ś135.
https://doi.org/10.1145/3377811.3380426

[41] Ratnadira Widyasari, Sheng Qin Sim, Camellia Lok, Haodi Qi, Jack Phan, Qijin
Tay, Constance Tan, Fiona Wee, Jodie Ethelda Tan, Yuheng Yieh, Brian Goh,
Ferdian Thung, Hong Jin Kang, Thong Hoang, David Lo, and Eng Lieh Ouh. 2020.
BugsInPy: a database of existing bugs in Python programs to enable controlled
testing and debugging studies. In ESEC/FSE ’20: 28th ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software Engineering,
Virtual Event, USA, November 8-13, 2020, Prem Devanbu, Myra B. Cohen, and
Thomas Zimmermann (Eds.). ACM, 1556ś1560. https://doi.org/10.1145/3368089.
3417943

451

https://doi.org/10.1109/TSE.2008.89
https://doi.org/10.1145/2882903.2899401
https://www.python.org/dev/peps/pep-0508/
https://www.python.org/dev/peps/pep-0508/
http://dl.acm.org/citation.cfm?id=3003382
https://arxiv.org/abs/1710.04936
http://arxiv.org/abs/1710.04936
https://doi.org/10.1145/3395363.3397388
https://doi.org/10.1145/3395363.3397388
https://doi.org/10.1145/3180155.3180181
https://doi.org/10.1145/3183399.3183417
https://doi.org/10.1109/ICSME.2018.00031
https://doi.org/10.1109/ICSE.2019.00047
https://doi.org/10.1109/ASE.2019.00052
https://doi.org/10.1109/MSR.2017.55
https://doi.org/10.1145/3293882.3330578
https://doi.org/10.1109/SANER.2018.8330201
https://doi.org/10.1109/SANER.2018.8330201
https://www.python.org/dev/peps/pep-0440/
https://www.python.org/dev/peps/pep-0440/
https://doi.org/10.1145/2568225.2568255
https://doi.org/10.1109/eScience.2017.51
https://doi.org/10.1109/ICSE.2019.00048
https://doi.org/10.1109/ICSE.2019.00048
https://doi.org/10.1145/3236024.3236062
https://www.techrepublic.com/article/python-overtakes-java-to-become-the-second-most-popular-programming-language/
https://www.techrepublic.com/article/python-overtakes-java-to-become-the-second-most-popular-programming-language/
https://doi.org/10.1145/3377811.3380426
https://doi.org/10.1145/3368089.3417943
https://doi.org/10.1145/3368089.3417943

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Managing Python Dependencies
	2.2 An Example of Dependency Errors
	2.3 Terminology

	3 Dependency Version Specifications
	3.1 Frequency of Version Specifications
	3.2 Challenges in Fixing Broken Dependencies

	4 Technical Approach
	4.1 Log Error Analyzer
	4.2 Iterative Dependency Solver

	5 Experimental Evaluation
	5.1 Evaluation of Dependency Error Impact
	5.2 Evaluation of Dependency Error Fixing

	6 Threats to Validity
	7 Related Work
	8 Conclusion
	Acknowledgments
	References

