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Abstract—Software bugs can cause significant financial loss
and even the loss of human lives. To reduce such loss, developers
devote substantial efforts to fixing bugs, which generally requires
much expertise and experience. Various approaches have been
proposed to aid debugging. An interesting recent research direc-
tion is automatic program repair, which achieves promising results,
and attracts much academic and industrial attention. However,
people also cast doubt on the effectiveness and promise of this
direction. A key criticism is to what extent such approaches can
fix real bugs. As only research prototypes for these approaches
are available, it is infeasible to address the criticism by evaluating
them directly on real bugs. Instead, in this paper, we design and
develop BUGSTAT, a tool that extracts and analyzes bug fixes.
With BUGSTAT’s support, we conduct an empirical study on more
than 9,000 real-world bug fixes from six popular Java projects.
Comparing the nature of manual fixes with automatic program
repair, we distill 15 findings, which are further summarized into
four insights on the two key ingredients of automatic program
repair: fault localization and faulty code fix. In addition, we
provide indirect evidence on the size of the search space to fix
real bugs and find that bugs may also reside in non-source files.
Our results provide useful guidance and insights for improving
the state-of-the-art of automatic program repair.

I. INTRODUCTION

Over the past decades, software has permeated into almost
every economic activity, and is boosting economic growth
from many perspectives. At the same time, like any other man-
made artifacts, software suffers from various bugs which lead
to incorrect results, deadlocks, or even crashes of the entire
system. When this happens in a critical application, it can cause
great loss of money or even human lives. For example, Zhivich
and Cunningham [40] report that the software of a hospital
miscalculated the proper dosage of radiation for patients. In
this accident, at least eight patients died. To improve the quality
of software, it is desirable to fix as many bugs as possible.
The long battle with software bugs began ever since software
existed. It requires much effort to fix bugs, e.g. Kim and
Whitehead [14] report that the median time for fixing a single
bug is about 200 days.

It has been actively studied to reduce the effort of fixing
bugs. A recent research direction is to investigate automatic
approaches to fixing bugs (see Section V for a detailed
discussion). A typical approach in this direction first locates
faults of a program, and then mutates the located faulty code
with predefined operators until the program passes all the
test cases. In this paper, we refer to this line of research
as automatic program repair, which complements traditional
approaches (e.g. [18]), since it has the potential to deal with a
variety of different bugs. Research in this direction has already

produced promising results. For example, Le Goues et al. [17]
reported that their approach was able to automatically fix 55
out of 105 bugs. However, many people question the positive
results. Existing approaches (e.g. [17], [12]) seem to be able to
fix only simple bugs, due to various limitations. For example,
Table 2 of Kim et al. [12] lists their ten templates to fix bugs,
which are all quite simple. As existing empirical studies (e.g.
[14]) show that it requires much expertise and time to fix
bugs, many researchers doubt the reported positive results. For
example, at ICSE 2014, Monperrus [22] criticized Kim et al.’s
recent work [12] and discussed a number of issues concerning
this research direction.

The preceding criticism shows that the research community
has limited knowledge on the nature of bug fixes. Although
empirical studies exist to understand bug fixes (see Section V
for details), only one [21] analyzed the links between the
nature of bug fixes and automatic program repair. Furthermore,
the empirical study focuses on only one aspect of automatic
program repair, namely the search space of fixing bugs; most
questions raised by Monperrus [22] are still open. For example,
how many bugs could be fixed by automatic program repair?
Which parts should be focused upon to further improve the
state-of-the-art? It is important to carefully design an empirical
study to answer these questions, and its results will benefit
future research in this direction:
Benefit 1. The results will provide insights on the potential of
automatic program repair. For example, the results will reveal
how many bugs can be fixed by simple changes. As pointed out
by Monperrus [22], existing approaches are effective in fixing
this type of bugs. As another example, the results will reveal the
essential operators to fix bugs. If we compare these operators
with an existing approach, we may estimate the potential of
the approach for fixing bugs.
Benefit 2. The results will provide insights on how to improve
existing approaches. For example, the results will reveal the
distribution of bug fixes, and the required knowledge to fix each
type of bugs. Future research may leverage such knowledge
to fix more bugs. As another example, the results will reveal
the nature of bug fixes, and future work may be able to tune
existing approaches to achieve their best performance.
Benefit 3. The results will provide insights on new research
directions of fixing bugs. For example, the results will reveal
how many bug fixes require modifications on only non-source
files. Follow-up work may explore how to locate bugs in non-
source files and how to fix them with advanced techniques.



Despite the preceding benefits, it is difficult to conduct such
an empirical study, due to the following challenges:
Challenge 1. It is difficult to collect the bug fixes for the
empirical study. First, it needs a large number of bug fixes to
ensure the representativeness of the results, but many projects
do not provide adequate data for analysis. For example, many
projects on SourceForge1 do not have a long active period, so
they provide limited bug fixes for analysis. Second, Kim et
al. [15] point out that it needs high quality bug fixes to reduce
superficial conclusions, but many bug fixes are polluted. For
example, although Linux has a long active period, its bug fixes
are intertwined with other types of commits (e.g. new features).
Although Tian et al. [31] propose an approach to identifying
bug fixes for Linux, its precision is relatively low, due to the
difficulty in accurately identifying bug fixes.
Challenge 2. It is challenging to implement the support tool.
It is infeasible to analyze a large amount of bug fixes manually,
so it is desirable to implement a support tool for analysis. To
save space, a bug fix typically consists of only buggy files and
modified files, instead of the whole project. As a result, the
tool should be able to compare and analyze partial code.

To address the two preceding challenges, we collect high-
quality bug fixes, and implement a tool, called BUGSTAT, that
automatically extracts, compares and classifies bug fixes. With
the support of the tool, we conduct the first empirical study to
investigate the aforementioned research questions. This paper
identifies the following key insights:
• Fault localization. Our results show that it is reasonable

to assume that it needs to fix only several files to fix a bug
(Findings 2 and 14). Current fault localization approaches
can deal with 30% of source files at the most (Finding
3). To deal with more source files, researchers should
consider multiple faulty lines (Findings 4 and 5) and the
data dependence among faulty lines (Finding 6).

• Faulty code fix. Our results show that it is reasonable
for automatic program repair to focus on modified source
files (Findings 12 and 15). The existing approaches can
potentially fix 30% of source files (Finding 3), but their
effectiveness in practice may be further reduced since
it is difficult to decide the faulty lines of a bug, and
the interference among multiple bugs is serious (Finding
4). To fix more bugs, researchers can focus on mutation
operators of several most common modified code elements
(Finding 8), API knowledge (Finding 11), the frequency
of repair actions (Finding 9), multiple faulty lines (Finding
5), their data dependence (Finding 6), and multi-language
programming (Finding 14).

• The search space. Combining the results of Martinez
and Monperrus [21] with our results in Figure 2, we find
that automatic program repair can potentially fix only half
of the buggy files, due to the huge space of searching
correct repair shapes (Finding 4). The potential is further
reduced, since even after such a shape is found, the effort
to find its concrete edits is nontrivial (Finding 11).

1http://sourceforge.net/

• Non-source bugs. Our results show that about 10% of
bugs reside in non-source files (Finding 1), and the
bug prediction models should consider non-source files
(Findings 1 and 2). Most of these files are configuration
files and natural language documents (Finding 13). Even
in source files, there are many bug fixes on non-code
elements such as comments (Finding 7).

The rest of the paper is structured as follows. Section II
presents our research methodology, and Section III presents our
empirical results. We discuss possible extensions to our study
in Section IV. Section V surveys related work, and Section VI
concludes.

II. METHODOLOGY

This section describes the dataset used in our empirical study
and our research questions. To answer these research questions,
we should analyze thousands of bug fixes. To reduce the effort
of manual inspection, we have developed the BUGSTAT tool
to identify and classify bug fixes.

A. Dataset

Table I lists the subject projects used in our study. Aries2

is a set of Java components that enable an enterprise OSGi
application programming model. Cassandra3 is a distributed
database management system that handles large amounts of
data across commodity servers. Derby4 is a relational database.
Lucene5 is an information retrieval library, and Solr6 is an
enterprise search platform that is built on Lucene. As Lucene
and Solr share the same source code repository, it is difficult
to determine whether a commit belongs to Lucene or Solr.
We put the results of the two projects into a single row.
Mahout7 is a machine learning library. All the projects are from
the Apache software foundation8, and most Apache projects
carefully maintain the links between bug reports and bug fixes.
Wu et al. [35] reported that even simple heuristics achieved
almost the same precision and recall with their proposed
sophisticated technique, when they identified bug fixes for
the Apache projects. We select the Apache projects, so that we
can focus on the study, rather than the techniques to identify
bug fixes. Column “LOC” lists lines of code. To ensure the
reliability of our results, we selected both median and large
projects. The total lines of code add up to more than one
million. We collected the dataset in February 2014. Cassandra
changed its source code repository from SVN9 to Git10 in
December 2011. As BUGSTAT retrieves commits from only
SVN repositories, for Cassandra it retrieved the data before
the repository was changed.

2https://aries.apache.org
3http://cassandra.apache.org
4http://db.apache.org/derby
5https://lucene.apache.org
6https://lucene.apache.org/solr
7https://mahout.apache.org
8http://www.apache.org
9https://svn.apache.org/repos/asf/cassandra/
10https://git-wip-us.apache.org/repos/asf?p=cassandra.git



TABLE I
DATASET

Name LOC
Bug Commit

F I % T N K %
Aries 142,110 497 490 98.6% 5,318 839 226 20.0%

Cassandra 121,170 1,374 1,236 90.0% 6,825 1,708 281 29.1%
Derby 659,426 2,433 2,022 83.1% 10,285 4,624 346 48.3%

Lucene/Solr 677,873 3,145 2,226 70.8% 26,890 4,234 2,019 23.3%
Mahout 121,084 457 407 89.1% 3,632 553 289 23.2%

Total 1,721,663 7,906 6,381 80.7% 52,950 11,958 3,161 28.6%

F: fixed bugs in bug reports. I: bugs whose
fixes are identified by issue number; T:
total commits; N: bug-fix commits that
are identified by issue number; K: bug-fix
commits that are identified by keywords.

All the projects in Table I have source code repositories. For
each project in Table I, BUGSTAT retrieves all the commits
from its source code repository. Each commit has a message.
We inspected the messages, and found two types of bugs: (1)
bugs reported through issue trackers, which we call reported
bugs, and (2) those not reported to issue trackers, which we
call on-demand bugs. To identify fixes of the two types, we
define the following two criteria:
1. Issue number. All the projects in Table I have their issue
trackers to track various issues (e.g. bugs, improvements, new
features, tasks, and sub-tasks). Each reported issue has an
associated issue number. If a change of an issue is committed,
programmers often write its issue number to the message of
the commit. For example, in Cassandra, a commit’s message
says “implement multiple index expressions. patch by jbellis;
reviewed by Nate McCall for CASSANDRA-1157”. The benefit
of the practice is that it is easy to track the issue. In the
issue tracker, the page of the issue11 lists useful information
(e.g., its description, the discussions among programmers, and
the relations to other issues). In the Apache projects, when
writing issue number to messages, programmers typically use
the “name-number” pattern, where name denotes the name of
a project, and number denotes the issue number. BUGSTAT
uses the pattern to extract issue number, and checks the issue
tracker to determine whether a commit is a bug fix. In the
above example, as CASSANDRA-1157 is a sub-task, BUGSTAT
determines that the commit is not a bug fix.

In Table I, column “Bug” lists the results with the issue
number criterion. Initially, the resolution of a reported issue
is unresolved, and is changed to fixed after programmers fix
the issue. Programmers may not fix some issues, since they
resolve these reports as invalid and duplicate. Programmers
may have different opinions on some reported issues, and
change them to other categories. For example, a reported bug
can be changed as a new feature request. For the “Bug” column,
subcolumn “F” lists the number of bug reports that are resolved
as fixed; subcolumn “I” lists the number of bug reports whose
bug fixes are identified by issue number; and subcolumn “%”
is calculated as D

F . The result shows that the issue number
criterion identifies fixes for 80% of the reported bugs, so our
study reflects the nature of the majority. BUGSTAT is similar to
existing approaches (e.g. [35]). The difference is that BUGSTAT
checks the issue tracker to determine whether an issue number

11https://issues.apache.org/jira/browse/CASSANDRA-1157

indicates a bug, while other approaches assume that every issue
number indicates a bug.
2. Keyword. Issue trackers do not store all the bug fixes. In
some cases, programmers may bypass issue trackers, especially
when they believe that a change is trivial. When they commit
a change, programmers may write a message to describe the
fix. For example, in Aries, the message of a commit says “Fix
broken service registration listener”. BUGSTAT determines a
commit as a bug fix, if its message contains words such as
“bug” or “fix”. The preceding commit was identified as a bug
fix, since its message contains the keyword “fix”. The heuristic
is simple, and a number of previous studies (e.g. [16]) used
the same technique to extract bug fixes.

In Table I, column “Commit” lists the results using the two
criteria. For this column, subcolumn “T” lists the number of
retrieved commits; subcolumn “N” lists the number of bug
fixes that are identified by issue number; subcolumn “K” lists
the number of bug fixes that are identified by keywords; and
subcolumn “%” is calculated as N+K

T . Our result shows that
about 30% of commits are bug fixes. In addition, as shown in
subcolumns “I” and “N”, a reported bug has two commits on
average, and an on-demand bug has one commit by definition.
If it is necessary, we treat the two types of bugs differently,
when we investigate our research questions.

B. Research Questions

We consider the following research questions:
RQ1. To what extent are bugs localized (Section III-A)?
As the first step, automatic program repair leverages fault
localization techniques to locate the faulty line. Typically,
a fault localization approach compares passing and failing
traces. The suspiciousness of each line is calculated by different
formulae, according to how many times the line appears in
failing and passing traces. Wong and Debroy [34] show that
most fault localization approaches assume that each buggy
source file has exactly one line of faulty code. However, if
a bug has multiple lines of faulty code, the impacts of these
lines may depend on each other. In this study, we analyze the
fault distribution of real bugs. The results provide insights on
locating faults.
RQ2. How complicated is it to fix bugs (Section III-B)?
After a faulty line is located, automatic program repair
mutates the faulty line to generate candidates, and uses genetic
algorithm (e.g. [17]) or random search (e.g. [26]) to select
candidates, until a candidate passes all the test cases. These
approaches are effective in fixing a faulty line, but may be
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Fig. 1. The fault distribution at the bug level.

ineffective in fixing multiple faulty lines, especially when such
lines are relevant. For example, for a specific bug, two lines
of code have data dependence, and it is important to maintain
the dependence during the bug fix process. If the two lines
of code are mutated independently, their data dependence can
be easily broken. In this study, we analyze data dependence
among faulty lines to investigate the complexity of fixing bugs;
the results provide insights on fixing bugs.
RQ3. What operators are essential for fixing bugs (Sec-
tion III-C)?
When fixing bugs, automatic program repair uses predefined
operators to mutate faulty code. The operators are quite
important, since they decide how many and which bugs can
be fixed. Current automatic program repair uses quite limited
operators. For example, although Kim et al. [12] achieved better
results than previous approaches, their approach relies only ten
templates to mutate code. Although it is widely known that
existing approaches use incomplete operators, it is challenging
to make improvements. In this study, we analyze the operations
to fix real bugs. The results provide insights on designing more
comprehensive operators.
RQ4. What is the importance of API knowledge to fix bugs
(Section III-D)?
API knowledge is useful in various programming tasks (e.g.,
coding [43] and migrating code [42]). Our previous work [44]
shows that careless programmers may introduce API-related
bugs. However, current automatic program repair does not
leverage API knowledge, and thus is ineffective in fixing API-
related bugs. In this study, we analyze how many bug fixes are
related to APIs. The results provide insights on the importance
of API knowledge for fixing bugs.
RQ5. What kinds of files are necessary to be modified to fix
bugs (Section III-E)?
We notice that many bugs are not related to source files, and
such bugs could not be fixed by current automatic program
repair techniques. It is desirable to understand where such
bugs reside, so we could investigate their nature and explore
corresponding repair approaches. In this study, we analyze the
types and the distribution of modified files when programmers
fix real bugs. The results provide insights on fixing bugs that
do not reside in source files.
RQ6. How many files are necessary to be added or deleted
to fix bugs (Section III-F)?
Automatic program repair only modifies source files, but
programmers may also add or delete files to fix real bugs.
Thus existing approach may be insufficient in fixing certain

bugs. In this study, we analyze the distribution of added and
deleted files when programmers fix real bugs. The results
provide insights on fixing the corresponding bugs.

We implement BUGSTAT to reduce the manual effort, and it
uses ChangeDistiller [7] to compare source files and PPA [4]
to parse partial code.

III. EMPIRICAL RESULTS

A. RQ1: Fault Distribution

We calculate the number of modified files for each bug fix,
and Figure 1 shows the distribution. Its horizontal axes show
the number of modified source file, and its vertical axes show
the percentage of the corresponding bugs. The results lead to
the following findings:
Finding 1. In total, programmers did not modify any source
files to fix about 10% of reported bugs and about 20% of
on-demand bugs. Yin et al. [38] show that both open-source
and commercial projects contain many errors in configuration
files, and Xiong et al. [36] propose an approach to fix such
errors. In this study, we find bug fixes in configuration files.
For example, a bug report of Solr12 says that the released code
did not compile, since the compiler’s configuration file did not
set the paths correctly. The modified lines are as follows:
+ <tarfileset dir="../lucene"
+ prefix="lucene"
+ excludes="**/build/" /> ...

Our previous work [41] detects errors in documents. In this
study, we find bug fixes in documents. For example, a bug
report of Lucene13 says that the online user guide did not
display correctly, and the modified line is as follows:
-<!DOCTYPE...".../xhtml1/DTD/xhtml1-transitional.dtd">
+<!DOCTYPE...".../html4/loose.dtd">

Researchers [45], [13], [37] have proposed models to predict
buggy source files for a bug report. As source files are quite
different from non-source files, it needs nontrivial extension
to predict buggy non-source files. In addition, as non-source
files are typically not executable, it needs nontrivial extension
for fault localization to locate faulty lines for non-source
files. Section III-E shows that some modified files are in
programming languages other than Java. As BUGSTAT parses
Java code, it considers only Java code as source files.
Finding 2. In total, programmers modified one or more source
files to fix about 90% of reported bugs and more than 70%

12https://issues.apache.org/jira/browse/SOLR-1989
13https://issues.apache.org/jira/browse/LUCENE-4302
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Fig. 2. The fault distribution at the file level.

of on-demand bugs. The number of buggy files for a bug is
an important parameter for fault prediction models (e.g. [45],
[13]). Our results show that the percentage of bugs decreases
rapidly with the increasing number of modified source files,
and the percentage of on-demand bugs decreases even faster.
It is reasonable to set the value of the parameter to be four
or less, since more than 80% of bugs have fewer than four
modified source files.

We further analyzed the modified locations of each modified
source file. The underlying tool, ChangeDistiller [7], produces
a set of repair actions from two compared source files. A
repair action is a pair 〈a, e〉, where a is an action such as add,
delete, update, and move, and e is a code element. For actions,
BUGSTAT considers add as additions, delete as deletions,
and update and move as modifications. To understand bug
fixes, we often need statement-level changes. For example, it
requires different knowledge to fix if statements and return

statements, although modified internal code elements are the
same (e.g. variables). For each repair action inside a statement,
BUGSTAT replaces its code element with the statement, and
it ignores repair actions on the same statement. A code
element may not have a parent statement (e.g., Modifier and
Javadoc). BUGSTAT does not change repairs on these code
elements. In addition, when programmers fix a bug, they often
modify the test code to reproduce the bug. As repair actions on
test code are more like implementing new features, BUGSTAT
ignores these repair actions. For each of the remaining modified
files, we calculate its number of repair actions, and Figure 2
shows the results. Its horizontal axis shows the number of
repair actions, and its vertical axis shows the percentage of the
corresponding modified files. We have the following finding:
Finding 3. In total, programmers made a repair action to fix
less than 30% of source files. Wong and Debroy [34] claim that
most fault localization approaches assume that each buggy file
has exactly a faulty line. As these source files fit the assumption,
existing approaches have the potential to locate their faulty
lines. However, their effectiveness in practice may be limited
for two reasons. First, a faulty line may not appear in traces,
so fault localization approaches cannot locate it. For example,
code comments are not executable and will not appear in traces,
although they may contain errors. As another example, fixing
bugs sometimes requires changing modifiers. In particular, a
bug report of Solr14 says that the visibility of a method should
be changed. The original code is as follows:
46: public abstract Query parse()...

14https://issues.apache.org/jira/browse/SOLR-601
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The fixed code is as follows:
46: protected abstract Query parse()...

As many tools instrument only method bodies, Line 46 will
not appear in their traces. Second, an added or deleted code
element may have multiple lines (see Section III-C for details).
For example, adding a method is considered a single repair
action. Current automatic program repair cannot add a method
effectively, since a method may contain many lines.
Finding 4. In total, programmers made at least two repair
actions to fix more than 70% of source files.

DiGiuseppe and Jones [5] conducted an empirical study
to explore the influence of multiple faults on fault localiza-
tion approaches. Their results show that fault localization
approaches are effective in locating at least one faulty line, but
the ranks of the remaining faulty lines are low. They suggest
that programmers may use fault localization to locate and fix
faulty lines one bye one. The suggestion works for humans,
but may not apply to automatic program repair for two reasons.
First, automatic program repair needs to rerun test cases to
guide the bug fix process. DiGiuseppe and Jones [5] show
that the interference among multiple faults is serious, and
such interference may negatively impact the search algorithms.
Second, it may be insufficient to mutate a single line to fix
bugs. For example, a bug report of Solr15 says that an exception
was thrown due to the misuse of Java reflection. In particular,
three methods use Java reflection to call the methods of clob,
and one method has the faulty lines as the following:
110: Method m = clob.getClass().

getDeclaredMethod("getCharacterStream");
111: if (Modifier.isPublic(m.getModifiers())) {

...
116: return (Reader) m.invoke(clob);
117: }

If the getCharacterStream method is defined in the super-
class of clob, Line 110 will throw an exception, since clob

does not define the method. The fixed code is as follows:
110: return clob.getCharacterStream();

It is reasonable for programmers to fix the bug from a faulty
line, but it can be difficult for automatic program repair to fix
the bug, since fault localization approaches typically do not
report the line range of a bug. Qi et al. [27] use different fault
localization approaches to locate the faulty lines for automatic
program repair. Their results are consistent with our results,
since they find that the best technique for humans is not the best
technique for automatic program repair. Still, more research is
needed to fully understand such influence, since their study [27]

15https://issues.apache.org/jira/browse/SOLR-1794
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Fig. 4. The distribution of repair actions.

does not analyze low-level details (e.g. the inference of multiple
faults). Research exists (e.g. [19]) to recover the links between
test cases and multiple bugs, but additional research is needed to
locate multiple faults and fault ranges, especially for automatic
program repair.

Automatic program repair uses machine learning algorithms
such as genetic algorithm [17] and random search [26] to
guide the bug fix process. Martinez and Monperrus [21] mine
two repair models (CT and CTET) from bug fixes. The two
mined repair models are the probability distributions of repair
actions (e.g., inserting a statement) at different granularity.
Their results show that the space of searching repair shapes
explodes when the length of repair actions is more than four
or eight for the two models, respectively. Here, a repair shape
is a set of repair actions. The two repair models are built
on ChangeDistiller, and the granularity of ChangeDistiller is
between CT and CTET. If we adjust the repair models to the
granularity of ChangeDistiller, the maximum number may be
between four and eight. Figure 2 shows that about half of the
buggy files have more repair actions. In addition, even after a
correct repair shape is found, it is still nontrivial to synthesize
the concrete fix. As a result, we estimate that current automatic
program repair cannot fix more than half of the buggy files
due the large search space to synthesize fixes.

B. RQ2: Fault Complexity

Based on the fault complexity, we classify modified source
files into four categories: a single repair action (C1), non-

data dependent repair actions (C2), data dependent repair
actions (C3), and mixture repair actions (C4). BUGSTAT puts
a repair action into a set of data dependent repair actions, if
its code element contains a variable, and the variable has data
dependence on variables in that set.

As shown in Figure 2, programmers made a single repair
action to fix about 30% of source files. These source files
fall into the C1 category. Current automatic program repair
is effective in fixing bugs in this category. We calculated the
number for the other three categories, and Figure 3 shows
the results. Its vertical axis shows the subject projects, and its
horizontal axis shows the percentages of the three categories.
The results lead to the following findings:
Finding 5. As shown in Figures 2 and 3, programmers made
multiple non-data dependent repair actions to fix about 40% of
source files (the C2 category). As these repair actions are not
data dependent, it may be feasible to apply the repair actions
one by one when fixing bugs. For example, a bug report of
Lucene16 says that an exception was thrown if a resource was
closed, and a submitted patch is as follows:
@@ -152,7 +152,15 @@
- swapSearcher(newSearcher);
+ boolean success = false;
+ try {
+ swapSearcher(newSearcher);
+ success = true;
+ } finally {

...
+ }

16https://issues.apache.org/jira/browse/LUCENE-3476



@@ -204,7 +212,12 @@
- public void close() throws IOException {
- swapSearcher(null);
+ public synchronized void close() throws IOException {
+ if (currentSearcher != null) {

...
+ swapSearcher(null);
+ }

In the first diff hunk of the patch, programmers placed a
statement inside a try statement. In the second diff hunk of
the patch, programmers put a statement into an if statement.
As the two faulty lines have no data dependency, it may be
feasible for existing approaches to fix them one by one.
Finding 6. In total, as shown in Figures 2 and 3, programmers
made data dependent repair actions to fix more than 40% of
source files (the C3 and C4 categories). For example, a bug
report of Mahout17 says that a function got broken over time,
and the faulty lines were as follows:
130: if (r == 0) {
131: if (index < o.index) {
132: return -1;
133: } else if (index > o.index) {
134: return 1;
135: }
136: return 0;
137: } else {
138: return r;
139: }

When r is zero, the preceding code returns a wrong value. To
calculate the correct value, programmers should understand the
relation among r, o.index, and index. The modified lines
are as follows:
130: if (r != 0) {
131: return r;
132: } else {
133: return o.index - index;
134: }

It should be more difficult for programmers to fix source files
in this category than the C1 and C2 categories, since they have
to consider the nodes that depend on each other. However,
the added complexity may be an opportunity for automatic
approaches. For example, a fault localization approach may
use the data dependencies to locate relevant faulty lines of a
located faulty line, and automatic program repair could use
the data dependencies to prune its search space.

C. RQ3: Mutation Operator

As the underlying tool, ChangeDistiller [7], is built on
the Eclipse’s Java model18, the code elements of extracted
repair actions follow the APIs of Eclipse19. We find that the
underlying tool has special strategies to extract repair actions
on Block and MethodDeclaration. For example, it counts
adding or deleting a method as an addition or a deletion on
MethodDeclaration, but it counts only modifying a method
name as a modification on MethodDeclaration. It does
not count modifications inside a method (e.g., the modifier,
the parameters, and the statements in the method body) as
a modification on MethodDeclaration, but counts them at

17https://issues.apache.org/jira/browse/MAHOUT-591
18http://www.vogella.com/tutorials/EclipseJDT/article.html
19http://help.eclipse.org/indigo/topic/org.eclipse.jdt.doc.isv/reference/api/
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Fig. 5. The distribution of API repair actions.

finer levels. Here, as a method may have complicated structures,
current program repair may not add a method effectively,
although it is counted as a repair action.

As discussed in Section III-B, non-data dependent repair
actions follow quite different patterns from data dependent
repair actions, and current automatic program repair is effective
to apply only non-data dependent repair actions. To eliminate
the interference between the two types of repair actions
and to provide valuable findings for the state-of-the-art, this
study focuses only on non-data dependent repair actions.
By definition, Javadoc, Modifier, BreakStatement, and
ContinueStatement have only non-data dependent repair
actions. All the other code elements have both data dependent
and non-data dependent repair actions. The nature of code
elements affects their ranks. For example, Pan et al. [25]
show that a large portion of bug-fix patterns are related to if

statements. In our study, we find that most repair actions on if

statements are data dependent. As a result, its rank is low. The
results show that automatic program repair should leverage
data-flow analysis to effectively apply repair actions on this
code element.

We calculated the number of repair actions on each code
element, and Figure 4 shows the results. Its vertical axis
shows the names of code elements. To save space, we do
not present code elements whose repair actions are less than
1%. Its horizontal axis shows the number of repair actions with
the categories such as additions, deletions, and modifications.
The results lead to the following findings:
Finding 7. In total, repair actions on Javadoc rank the first.
In the Eclipse’s Java model, Javadoc denotes the comments
between code. Programmers modified these code comments,
since they contain errors or become inconsistent with the
implementation. There exists research to address this problem.
For example, our previous work [41] detects documentation
errors (e.g. outdated code names in comments). As another
example, Tan et al. [29] and Zhong et al. [44] infer formal
rules from code comments and check the rules against the
implementation to detect inconsistencies. Although the problem
has been explored, there may still be space for improvement,
since there are many modifications on Javadoc.
Finding 8. The repair actions on a code element typically
increase with its complexity. For example, in Eclipse’s Java
model, Expression is complicated, since it has a rich set of
subclasses20. MethodInvocation is one of its subclasses, and

20http://help.eclipse.org/indigo/topic/org.eclipse.jdt.doc.isv/reference/api/
org/eclipse/jdt/core/dom/Expression.html



TABLE II
THE DISTRIBUTION OF MODIFIED FILES

Aries Cassandra Derby Lucene/Solr Mahout Total
java java java java java java
xml txt out txt xml txt

mdtext py properties xml CHANGELOG xml
xml sql html out

xml properties
sql

it may invoke complicated API methods. By definition, each
ExpressionStatement has at least an Expression node,
and each ReturnStatement can have an Expression node.
As the inside nodes are complicated, the repair actions on the
two types of statements rank the second and the third, in total.
In contrast, BreakStatement and ContinueStatement are
relatively simple, so the repair actions on the two types of
statements are much fewer.
Finding 9. The actions on code elements follow two patterns.
First, the modifications on a code element increase with its
complexity. For example, ExpressionStatement is more
complicated than BreakStatement as discussed before. Thus
as shown in Figure 4, the former statement has more modifi-
cations than the latter statement. In fact, all the modifications
of the latter statement are to move from one line to another,
since it has no internal structures. Second, additions on a code
element are more than deletions. When bugs are introduced,
a careless programmer may forget some statements, and may
also add unwanted statements. Our results show that the former
case is more common than the latter case. Automatic program
repair could use the two patterns to prune its search space,
when they mutate the faulty code.

D. RQ4: API Knowledge

The underlying tool, PPA [4], parses and resolves full names
of code elements. BUGSTAT considers a repair action as an
API repair action, if the full name of its code element indicates
that the code element is declared by third-party API libraries. If
PPA fails to resolve the full name for a code element, BUGSTAT
conservatively classifies the corresponding repair action into the
non-API category. Figure 5 shows the distribution. Its horizontal
axis shows the number of API repair actions, and its vertical
axis shows the percentage of corresponding modified source
files. Based on the results, we have the following findings:
Finding 10. In total, programmers did not make any API
repair actions to fix half of the source files. The results
explain why current automatic program repair is able to fix
many bugs without API knowledge. By definition, some code
elements (e.g., Javadoc, Modifier, BreakStatement, and
ContinueStatment) do not contain API elements, so repair
actions on these code elements are not related to APIs. The
repair actions on some other code elements have limited
relation to APIs. For example, in Figure 4, SwithCase requires
constants. If a constant in API libraries passes the type check,
it may be used to fix bugs in SwithCase.
Finding 11. In total, programmers made at least one API
repair action to fix the other half of source files. We find that

complicated code elements tend to have more API repair actions.
For example, as discussed before, ExpressionStatement is
complicated, and we find many API repair actions on this code
element. In particular, a bug report of Cassandra21 says that it
fails to read saved files, and the faulty line is as follows:
249: in = new ObjectInputStream(...);

Line 249 is an ExpressionStatement. This statement calls
ObjectInputStream to read files, but the files are saved
with incompatible APIs. To fix the bug, programmers choose
another API, and the modified line was as follows:
249: in = new DataInputStream(...);

Robillard et al. [28] show that various approaches have been
proposed to mine specifications for API libraries. As mined
specifications describe legal API usage, they may be useful
to fix API-related bugs. An interesting point to note is that
most mined specifications describe the usage of only several
API elements, according to our previous work (e.g. [43]). In
Figure 5, a file has fewer than five API repair actions on average.
The results indicate that an API usage typically involves only
several API elements, regardless whether it is legal or illegal.

E. RQ5: File Type for Modifications

We calculated the file types of all the modified files, and
Table II shows the distribution. In Table II, we use the suffices
of file names to denote file types. To save space, we do not
present file types that are less than 1%. Based on the results,
we have the following findings.
Finding 12. The most common modified files are Java source
files, and the other files are much fewer. The result is not
surprising, since all the studied projects are in Java. However,
we have noticed something interesting when we compare
the results with results in Figure 1. Figure 1 shows that
programmers did not modify Java source files to fix at least
10% of the bugs. As a result, on average, programmers modified
fewer files when a bug did not involve Java source files than
when it did. The result indicates that the dependency among
Java source files may be higher than that among other files
(e.g. configuration files).
Finding 13. The two most common modified non-source files
are configuration files and natural language documents. The
names of the most found configuration files end with “xml” or
“properties”, and we find three typical types of such files. The
first type defines the parameters of build tools (e.g., Ant22),
and one such example is presented in Finding 1. The second
type defines runtime parameters. For example, a bug report of

21https://issues.apache.org/jira/browse/CASSANDRA-2174
22http://ant.apache.org



0 1 2 3 4 5 6 7 8 9
0

0.2

0.4

0.6

0.8

1

number of added source files

 p
er

ce
nt

 o
f 

co
rr

es
po

nd
in

g 
bu

gs

 

 

Aries
Cassandra
Derby
Lucene/Solr
Mahout
Total

additions for reported bugs

0 1 2 3 4 5 6 7 8 9
0

0.2

0.4

0.6

0.8

1

number of deleted source files

pe
rc

en
t o

f 
co

rr
es

po
nd

in
g 

bu
gs

 

 

Aries
Cassandra
Derby
Lucene/Solr
Mahout
Total

deletions for reported bugs

0 1 2 3 4 5 6 7 8 9
0

0.2

0.4

0.6

0.8

1

number of added source files

pe
rc

en
t o

f 
co

rr
es

po
nd

in
g 

bu
gs

 

 

Aries
Cassandra
Derby
Lucene/Solr
Mahout
Total

additions for on-demand bugs

0 1 2 3 4 5 6 7 8 9
0

0.2

0.4

0.6

0.8

1

number of deleted source files

pe
rc

en
t o

f 
co

rr
es

po
nd

in
g 

bu
gs

 

 

Aries
Cassandra
Derby
Lucene/Solr
Mahout
Total

deletions for on-demand bugs
Fig. 6. Additions and deletions.

Cassandra23 says that committing log can cause write pauses.
To fix the bug, programmers modified code and enlarged the
following old parameter:
312:<CommitLogSyncPeriodInMS>1000</CommitLogSyncPeriodInMS>

The modified line was as follows:
312:<CommitLogSyncPeriodInMS>10000</CommitLogSyncPeriodInMS>

The third type defines parameters of third-party tools. For
example, many programmers use Findbugs24 to detect bugs,
and the tool has a configuration file to enable specific checks.
We find that the programmers of Mahout added several lines
to the Findbugs’ configuration file to enable a check:
40:<Match>
41: <Bug pattern="SE_NO_SUITABLE_CONSTRUCTOR"/>
42:</Match>

The names of most found natural language documents end
with “html” or “txt”. These documents are manuals, tutorials
and change logs. The results highlight the importance of fixing
bugs in configuration files and natural language documents.
Finding 14. Some modified source files are in programming
languages other than Java for two reasons. First, a project
may be implemented in multiple programming languages.
For example, Cassandra is a database, and its programmers
implement a Python driver. A bug report25 says that the driver
did not parse queries correctly. To fix the bug, programmers
modified one faulty line of the cursor.py file:
39:_cfamily_re = re.compile("...", re.I | re.M)

The modified line was as follows:
39:_cfamily_re = re.compile("...",

re.IGNORECASE | re.MULTILINE | re.DOTALL)

Second, a project may implement an interface for a program-
ming language. For example, Derby is a database that supports
queries in SQL, and its programmers use SQL queries as
test cases. A bug report of Derby26 says that when an error
code was returned when a query casted DATE to TIMESTAMP.

23https://issues.apache.org/jira/browse/CASSANDRA-668
24http://findbugs.sourceforge.net
25https://issues.apache.org/jira/browse/CASSANDRA-2993
26https://issues.apache.org/jira/browse/DERBY-896

To reproduce the error, a programmer added a line to the
cast.sql file:
476: select cast(t as timestamp) from tab1;

On this line, t is a column of table tab1, and the type of t
is time, and the cas.out file recorded the output:
ij> select cast(t as timestamp) from tab1;
ERROR 42846: Cannot convert types ’TIME’ to ’TIMESTAMP’.

The two situations highlight the importance of fixing bugs in
multiple programming languages. As automatic program repair
has been evaluated on only a limited number of programming
languages, such as C and Java, it may require significant
improvement to fix bugs in other programming languages. For
example, it is challenging to instrument SQL queries to collect
their executed traces. Without such traces, it is infeasible to
use fault localization to locate faulty lines in such queries.

F. RQ6: Additions and Deletions

We calculated the number of added and deleted files for
each bug fix, and Figure 6 shows the distribution. Its horizontal
axes show the number of added or deleted source files, and its
vertical axes show the corresponding percentage. Based on the
results, we have the following finding:
Finding 15. In total, programmers did not add any files to
fix more than 80% of the bugs, and they did not delete any
files to fix more than 90% of the bugs. Hattori and Lanza [9]
analyze the nature of commits, and they find that the size of a
commit is associated with the type of the commit. In particular,
tiny commits are more related to bug fixes, and large commits
are more related to new features. Our result reflects another
nature of commits, namely at the file level, modifications may
be more related to bug fixes. As most bug fixes require only
modifying files, it is reasonable for automatic program repair
to focus on mutating files to fix bugs.

G. Threats to Validity

The threat to internal validity includes the defects in the
underlying tools that we use. ChangeDistiller may produce



infeasible edit scripts, and PPA may wrongly resolve code
elements. To reduce this threat, we reported our found defects,
and if they are not fixed, we tried to fix them by ourselves. The
threat could be further reduced by developing more advanced
tools. The threat to external validity includes our selected
subjects. Although we analyzed thousands of bug fixes in
total, the selected projects may still be limited and are all
for Java. It is likely that most our findings still hold in other
programming languages, but the specific numbers may be
different. For example, although the repair actions on a code
element increase with the complexity of its usage (Finding 8) in
other programming languages, the ranks of code elements will
be different, since other programming languages may define
quite different code elements. To reduce this validity, our study
should be replicated in future work by using subjects in other
programming languages.

IV. DISCUSSIONS AND FUTURE WORK

Bug definitions. Practitioners and researchers can have dif-
ferent definitions of bugs. Herzig et al. [10] claimed that
at least 30% of reported bugs are not bugs, but features.
Even researchers may have different definitions of bugs. For
example, in our previous work [41], we reported our detected
documentation errors as bugs, and programmers accepted and
fixed them as bugs. However, by the definition of Herzig et al.,
our detected errors are documentation requests, but not bugs.
The different definitions lead to quite different results. In our
study, we follow the pragmatic definition of practitioners, i.e.,
those issues that are reported and fixed as bugs. The benefit is
that the results reflect the reality of practice, and practitioners
do not need to read all the definitions to understand our results.
More factors of automatic program repair. We have focused
on the major factors of current automatic program repair, and
due to space limit, we certainly miss some factors that are also
relevant. For example, the domain knowledge of compilers,
tool chains, programming models, multi-programming and
concurrent, and the low-level knowledge of operating systems
and hardware are essential to fix some bugs. Murphy-Hill et
al. [23] present various factors, when programmers manually
fix bugs. In addition, Luo et al. [20] show that bugs can not
be easily reproducible or verifiable, which introduces extra
barriers to automatic program repair. In future work, we plan
to conduct studies to investigate the importance of these factors.
Manual fixes vs. automatic fixes. Neither manual fixes nor
automatic fixes are perfect. Although Yin et al. [39] show that
manual fixes can be incorrect, our results are still reliable, since
most fixes are correct. At the same time, a program fix may
pass test cases, but does not fix the real problem. Bird et al. [3]
show that even manual fixes should be carefully examined, so
it is likely that the correctness of program fixes also needs
to be verified. Although we agree with Monperrus [22] that
understandability of patches is inessential in certain situations,
in most cases, generated patches should be readable to humans
or other programs for verification. In addition, although it is
a practical way to mimic humans and it is a good way to
understand the challenges by analyzing manual fixes, we agree

that there could be alternative ways to solve the problem. For
example, computers can already beat the best human players
in playing chess, and the algorithm is quite different from
humans, since computers have much larger (and more reliable)
memories and much stronger computational capabilities than
most humans [1]. With advanced techniques, it is conceivable
that a computer algorithm may produce better patches than we
humans do.

V. RELATED WORK

Automatic program repair. Weimer et al. [33] proposed
GenPro, a seminal work on automatic program repair. Le
Goues et al. [17] extended GenPro, and proposed new mutation
and crossover operators. Kim et al. [12] manually inspected
thousands of bug fixes and summarized ten templates as new
mutation operators. Wei et al. [32] used mined invariants to
fix bugs. Jin et al. [11] proposed new mutation operators and
selectors that are designed to fix concurrent bugs. All the
preceding approaches define a limited number of simple repair
shapes, and rely on genetic algorithm to generate complicated
repair shapes to fix complicated bugs. Qi et al. [26] show
that random search is more effective than genetic algorithm
to guide the bug fix process. Martinez and Monperrus [21]
mine repair models from manual fixes, and the mined repair
models improve random search. Our study provides findings
and insights to better understand and improve these approaches.
Fault localization. Fault localization has been an extensive
studied topic. Wong and Debroy [34] provided a comprehensive
survey on this line of research. Most of the approaches (e.g.
[8]) assume that each program has exactly one faulty location,
and a few recent approaches (e.g. [19]) start to explore the links
between traces and multiple faulty locations. Our study shows
that future research should further improve existing approaches
to locate bugs in multiple locations.
Empirical study on bug fixes. Various empirical studies exist
to understand the nature of bug fixes. Yin et al. [39] show that
bug fixes could introduce new bugs. Nguyen et al. [24] show
that repetitiveness is common in small size bug fixes. Eyolfson
et al. [6] show that the bugginess of a commit is correlated with
the time to make the commit. Bird et al. [2] show that many
projects did not carefully maintained the links between bug
reports and bug fixes. Our empirical study has analyzed bug
fixes to gain insights on automatic program repair, providing a
different research angle than previous studies. Thung et al. [30]
manually examined bug fixes; their results show that faults
are not localized. Our results are largely consistent with their
findings. However, our results are built on much larger samples,
since we analyzed bug fixes automatically. In addition, different
from theirs, our study is not limited to fault localization.

VI. CONCLUSION

To reduce the effort of fixing bugs, various approaches
have been proposed to automatically repair programs. These
approaches show promising results, but their effectiveness
on real-world bugs has also been questioned and criticized.
Directly evaluating tools from these efforts on real bugs may



produce many trivial and negative results, since they are still
immature research prototypes. Instead, we have conducted a
large-scale empirical study on thousands of real-world bug
fixes from five popular projects. We have compared how
programmers fix bugs and how bug-fix approaches are designed,
and distilled 15 findings and four insights that we believe are
useful to guide future research in this direction.
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