Heuristic Search

Ref: Chapter 4
Heuristic Search Techniques

• *Direct* techniques (blind search) are not always possible (they require too much time or memory).

• *Weak* techniques can be effective if applied correctly on the right kinds of tasks.

 – Typically require domain specific information.
Example: 8 Puzzle
Which move is best?
8 Puzzle Heuristics

• Blind search techniques used an arbitrary ordering (priority) of operations.
• Heuristic search techniques make use of domain specific information - a heuristic.
• What heuristic(s) can we use to decide which 8-puzzle move is “best” (worth considering first).
8 Puzzle Heuristics

• For now - we just want to establish some ordering to the possible moves (the values of our heuristic does not matter as long as it ranks the moves).

• Later - we will worry about the actual values returned by the heuristic function.
A Simple 8-puzzle heuristic

• Number of tiles in the correct position.
 – The higher the number the better.
 – Easy to compute (fast and takes little memory).
 – Probably the simplest possible heuristic.
Another approach

• Number of tiles in the *incorrect* position.
 – This can also be considered a lower bound on the number of moves from a solution!
 – The “best” move is the one with the lowest number returned by the heuristic.
 – Is this heuristic more than a heuristic (is it always correct?).

• Given any 2 states, does it always order them properly with respect to the minimum number of moves away from a solution?
GOAL

left

right

up

$h=2$

$h=4$

$h=3$
Another 8-puzzle heuristic

• Count how far away (how many tile movements) each tile is from it’s correct position.
• Sum up this count over all the tiles.
• This is another estimate on the number of moves away from a solution.
GOAL

left

right

up

h=2

h=4

h=4
Techniques

• There are a variety of search techniques that rely on the estimate provided by a heuristic function.

• In all cases - the quality (accuracy) of the heuristic is important in real-life application of the technique!
Generate-and-test

- Very simple strategy - just keep guessing.

\[
do \text{ while goal not accomplished} \\
\quad \text{generate a possible solution} \\
\quad \text{test solution to see if it is a goal}
\]

- Heuristics may be used to determine the specific rules for solution generation.
Example - Traveling Salesman Problem (TSP)

• Traveler needs to visit n cities.
• Know the distance between each pair of cities.
• Want to know the shortest route that visits all the cities once.
• $n=80$ will take millions of years to solve exhaustively!
TSP Example

A

D

B

C

1 6 2

5

1 2 3

4
Generate-and-test Example

- TSP - generation of possible solutions is done in lexicographical order of cities:
 1. A – B – C – D
 2. A – B – D – C
 3. A – C – B – D
 4. A – C – D – B
 ...

Diagram:
```
       A
    /   \  \
   B     C
  /\    /\  \\
B   D   C   D
   /\    /\    /\  \\
D   C   D   B   B  \\
```

Hill Climbing

• Variation on generate-and-test:
 – *generation* of next state depends on feedback from the *test* procedure.
 – *Test* now includes a heuristic function that provides a guess as to how good each possible state is.

• There are a number of ways to use the information returned by the *test* procedure.
Simple Hill Climbing

• Use heuristic to move only to states that are *better* than the current state.

• Always move to better state when possible.

• The process ends when all operators have been applied and none of the resulting states are better than the current state.
Simple Hill Climbing
Function Optimization

\[y = f(x) \]
Potential Problems with Simple Hill Climbing

• Will terminate when at local optimum.

• The order of application of operators can make a big difference.

• Can’t see past a single move in the state space.
Simple Hill Climbing Example

• TSP - define state space as the set of all possible tours.

• Operators exchange the position of adjacent cities within the current tour.

• Heuristic function is the length of a tour.
TSP Hill Climb State Space

Initial State

Swap 1,2

Swap 2,3

Swap 3,4

Swap 4,1

ABCD

BACD

ACBD

ABDC

DBCA

CABD

ABCD

ACDB

DCBA
Steepest-Ascent Hill Climbing

• A variation on simple hill climbing.
• Instead of moving to the first state that is better, move to the best possible state that is one move away.
• The order of operators does not matter.

• Not just climbing to a better state, climbing up the steepest slope.
Hill Climbing Termination

- Local Optimum: all neighboring states are worse or the same.

- Plateau - all neighboring states are the same as the current state.

- Ridge - local optimum that is caused by inability to apply 2 operators at once.
Heuristic Dependence

• Hill climbing is based on the value assigned to states by the heuristic function.
• The heuristic used by a hill climbing algorithm does not need to be a static function of a single state.
• The heuristic can look ahead many states, or can use other means to arrive at a value for a state.
Best-First Search

• Combines the advantages of Breadth-First and Depth-First searches.
 – DFS: follows a single path, don’t need to generate all competing paths.
 – BFS: doesn’t get caught in loops or dead-end-paths.
• Best First Search: explore the most promising path seen so far.
Best-First Search (cont.)

While goal not reached:

1. Generate all potential successor states and add to a list of states.
 2. Pick the best state in the list and go to it.

• Similar to steepest-ascent, but don’t throw away states that are not chosen.
Simulated Annealing

• Based on physical process of annealing a metal to get the best (minimal energy) state.

• Hill climbing with a twist:
 – allow some moves downhill (to worse states)
 – start out allowing large downhill moves (to much worse states) and gradually allow only small downhill moves.
Simulated Annealing (cont.)

- The search initially jumps around a lot, exploring many regions of the state space.

- The jumping is gradually reduced and the search becomes a simple hill climb (search for local optimum).
Simulated Annealing
A* Algorithm (a sure test topic)

• The A* algorithm uses a modified evaluation function and a Best-First search.

• A* minimizes the total path cost.

• Under the right conditions A* provides the cheapest cost solution in the optimal time!
A* evaluation function

- The evaluation function f is an estimate of the value of a node x given by:
 $$f(x) = g(x) + h'(x)$$
- $g(x)$ is the cost to get from the start state to state x.
- $h'(x)$ is the estimated cost to get from state x to the goal state (the heuristic).
Modified State Evaluation

- Value of each state is a combination of:
 - the cost of the path to the state
 - estimated cost of reaching a goal from the state.
- The idea is to use the path to a state to determine (partially) the rank of the state when compared to other states.
- This doesn’t make sense for DFS or BFS, but is useful for Best-First Search.
Why we need modified evaluation

• Consider a best-first search that generates the same state many times.
• Which of the paths leading to the state is the best?

• Recall that often the path to a goal is the answer (for example, the water jug problem)
A* Algorithm

• The general idea is:
 – Best First Search with the modified evaluation function.
 – $h'(x)$ is an estimate of the number of steps from state x to a goal state.
 – loops are avoided - we don’t expand the same state twice.
 – Information about the path to the goal state is retained.
A* Algorithm

1. Create a priority queue of search nodes (initially the start state). Priority is determined by the function f.

2. While queue not empty and goal not found:
 - Get best state x from the queue.
 - If x is not goal state:
 - Generate all possible children of x (and save path information with each node).
 - Apply f to each new node and add to queue.
 - Remove duplicates from queue (using f to pick the best).
Example - Maze
A* Optimality and Completeness

- If the heuristic function h' is *admissible* the algorithm will find the optimal (shortest path) to the solution in the minimum number of steps possible (no optimal algorithm can do better given the same heuristic).

- An *admissible* heuristic is one that never overestimates the cost of getting from a state to the goal state (is pessimistic).
Admissible Heuristics

• Given an admissible heuristic h', path length to each state given by g, and the actual path length from any state to the goal given by a function h.

• We can prove that the solution found by A* is the optimal solution.
A* Optimality Proof

• Assume A* finds the (suboptimal) goal G_2 and the optimal goal is G.
• Since h' is admissible: $h'(G_2)=h'(G)=0$
• Since G_2 is not optimal: $f(G_2) > f(G)$.
• At some point during the search some node n on the optimal path to G is not expanded. We know:

$$f(n) \leq f(G)$$
Proof (cont.)

• We also know node n is not expanded before G_2, so:

$$f(G_2) \leq f(n)$$

• Combining these we know:

$$f(G_2) \leq f(G)$$

• This is a contradiction! (G_2 can’t be suboptimal).
root (start state)

\[n \]

\[G \]

\[G2 \]
A* Example
Towers of Hanoi

- Move both disks on to Peg 3
- Never put the big disk on top the little disk