TD(0) Method for Policy Evaluation

(Sutton)

Initialize the value function V of policy π arbitrarily.

Repeat for each episode

- Initialize s (e.g. start state)

- **Repeat**
 - Choose $a \leftarrow \pi(s)$.
 - Do action a; Observe reward r and next state s'.
 - $V(s) \leftarrow V(s) + \alpha (r + \gamma V(s') - V(s))$.
 - Update $s \leftarrow s'$

- Until s is terminal or MAX STEPS

Approximate VI by sampling and bootstrapping

The value function associated with a policy π is the expected discounted sum of rewards received following the policy.

$$V^\pi(s) = E_\pi (r_{t+1} + \gamma V^\pi(s_{t+1}) \mid s_t = s)$$

Estimating the *expected* value of a random variable can be done by repeating the following *sampling* procedure:

- Carry out an action.
- Observe the actual next state and reward.
- Average over the observed values.

However, since the value $V^\pi(s_{t+1})$ is unknown, we use a *bootstrap* procedure of using the current estimate $V(s_{t+1})$ for the value.
TD(0) Method for Policy Evaluation

Initialize the value function V of policy π arbitrarily.

Repeat for each episode

- Initialize s (e.g., start state)
- **Repeat**
 - Choose $a \leftarrow \pi(s)$.
 - Do action a; Observe reward r and next state s'.
 - $V(s) \leftarrow V(s) + \alpha (r + \gamma V(s') - V(s))$.
 - Update $s \leftarrow s'$
- **Until** s is terminal or MAX STEPS

Learning to Evaluate Policies vs. Learning Control

- TD methods can be used to learn the value function of a fixed policy π.
- Learning optimal control in unknown environments, however, requires learning the action value function $Q(x, a)$.
- Learning control requires addressing the exploration/exploitation tradeoff.
- At each step: the agent can choose the action for which $Q(s, a)$ is highest (exploitation) or it can choose a random action (exploration).
- Exploration strategies can be directed or undirected.
Exploration Strategies

- *Semi-uniform* or *ε*-greedy: Choose a random action with probability $ε$, otherwise choose the highest $Q(s, a)$ action.

- *Boltzmann exploration*: Choose the action a that maximizes the probability
 \[
 \frac{e^{\frac{Q(s, a)}{\beta}}}{\sum_{a' \in A(s)} e^{\frac{Q(s, a')}{\beta}}}
 \]

- *Interval estimation*: Keep track of confidence intervals of the return resulting from choosing a particular state-action pair. Choose the action that has the highest upper bound.

- *Counter exploration*: Maintain a count of the number of steps each action was taken in every state. Choose the state-action pair that was performed least with some exploration probability.

SARSA: On Policy TD Control

- Initialize $Q(s, a)$ arbitrarily.

- Repeat (for each episode)

 - Initialize s

 - Choose a in s maximizing $Q(s, a)$ using $ε$-greedy exploration.

 - Repeat (for each episode step)

 * Take action a, observe reward r, new state s'.
 * Choose a' in s' maximizing $Q(s', a')$ using $ε$-greedy exploration.
 * $Q(s, a) \leftarrow Q(s, a) + \alpha (r + \gamma Q(s', a') - Q(s, a))$
 * $s \leftarrow s'$; $a \leftarrow a'$.

 until s is terminal.
Q-learning: Off Policy TD Control

• Initialize $Q(s, a)$ arbitrarily.
• Repeat (for each episode)
 – Initialize s
 – Repeat (for each episode step)
 * Choose a in s maximizing $Q(s, a)$ using ϵ-greedy exploration (or any other method).
 * Take action a, observe reward r, new state s'.
 * $Q(s, a) \leftarrow Q(s, a) + \alpha (r + \gamma \max_{a'} Q(s', a') - Q(s, a))$
 * $s \leftarrow s'$
 until s is terminal.

Convergence of Q-learning

• Q-learning learns the optimal action-value function, independent of the policy used to choose actions (can even be random).
• Q-learning converges to $Q^*(s, a)$ for any finite MDP, assuming
 – All actions are attempted in all states infinitely often
 – Learning rate α_n is decayed at each step n such that
 \[\sum_{n=0}^{\infty} \alpha_n = \infty \]
 \[\sum_{n=0}^{\infty} \alpha_n^2 < \infty \]
 – Action value function $Q(s, a)$ is stored as a table
• Convergence of SARSA is harder to prove (open question).
Problems with Discounting

- Causes an agent to sometimes prefer short-term mediocre reward over longer-term sustained reward.
- Arbitrary parameter that is not motivated by the problem.
- Most practical implementations of RL use discount factors very close to 1.

Eligibility Traces

- Keep a (decaying) trace of the states most recently visited.
- Instead of modifying the value function just at the last state, modify over all states.
- The *eligibility* of a state is based on how recently the state was visited.
- Different trace update algorithms: replacing and accumulating.
- General form of TD(λ) and SARSA.
Accumulating Traces

Define $e_t(s)$ to be the eligibility of state s at time t.

$$e_t(s) = \begin{cases}
\gamma \lambda e_{t-1}(s) & \text{if } s \neq s_t \\
\gamma \lambda e_{t-1}(s) + 1 & \text{if } s = s_t
\end{cases}$$

Online Tabular TD(λ)

Initialize $V(s)$ arbitrarily and $e(s) = 0$ for all states s.

Repeat for each episode

- Initialize s (e.g. start state)
- Repeat
 - Choose $a \leftarrow \pi(s)$.
 - Do action a; Observe reward r and next state s'.
 - $\delta \leftarrow r + \gamma V(s') - V(s)$.
 - $e(s) \leftarrow e(s) + 1$
 - For all s:
 * $V(s) \leftarrow V(s) + \alpha \delta e(s)$
 * $e(s) \leftarrow \gamma \lambda e(s)$
 * $s \leftarrow s'$
SARSA(\(\lambda\))

Initialize \(Q(s, a)\) arbitrarily and \(e(s, a) = 0\) for all \(s, a\).

Repeat for each episode

- Initialize \(s, a\)
- Repeat
 - Take action \(a\), observe reward \(r\) and next state \(s'\).
 - Choose action \(a'\) from \(s'\) that maximizes \(Q(s', a')\)
 - \(\delta \leftarrow r + \gamma Q(s', a') - Q(s, a)\).
 - \(e(s, a) \leftarrow e(s, a) + 1\)
 - For all \(s, a:\)
 * \(Q(s, a) \leftarrow Q(s, a) + \alpha \delta e(s, a)\)
 * \(e(s, a) \leftarrow \gamma \lambda e(s, a)\)
 * \(s \leftarrow s', a \leftarrow a'\)
TD(\(\lambda\)) Family of Learning Algorithms

Consider the parameterized update procedure (with parameter \(\lambda\))

\[
\Delta w_t = \alpha (P_{t+1} - P_t) \sum_{k=1}^{t} \lambda^{t-k} \nabla_w P_k
\]

Note that when

- \(\lambda = 1\): This results in pure supervised learning
- \(\lambda = 0\): This results in one-step TD learning (Q-learning)
- General \(\lambda\): Smooth interpolation between supervised and TD learning.

Scaling Reinforcement Learning

Issues:

- Large/continuous state spaces
- Impoverished feedback
- Transfer across tasks

Approaches:

- Function approximation
- Hierarchical methods and modularity
- Eligibility traces
Function Approximation

Question: how to *compactly* approximate the value function over a large/infinite state space?

Some methods:

- Neural nets
- Clustering
- Decision trees
- Nearest-neighbor
- CMAC (sparse coarse coding)

A Model-free Framework

![Diagram of a model-free framework](image)
Some Neural Net Architectures

Q(x,A1) Q(X,A2) Q(X,A3) Q(X,A)

Net for Action A1 Net for Action A2 Net for Action A3 Joint Net

Q-learning with Neural Nets

1. Input \(x \leftarrow \) current state; for each action \(i \), compute
 \(U_i \leftarrow Q(x, \hat{i}) \) by forward prop.
2. Select \(a \leftarrow \) select\((U, T)\)
3. Perform action \(a \). New state \(\leftarrow y \) and reinforcement = \(r \).
4. TD error \(u' \leftarrow r + \gamma \max_{k \in A(y)} Q(y, k) \)
5. Adjust neural net utility network by backpropagating \(\Delta U \) through it where
 \[
 \Delta U_i = \begin{cases}
 u' - U_i & \text{if } a = i \\
 0 & \text{otherwise}
 \end{cases}
 \]
6. Go to 1
Successful Neural Net RL Systems

- Robotics (Lin '93, Rummery '96)
- Elevator control (Crites & Barto, '95)
- Backgammon (Tesauro '94)

Note: in each of these systems, additional scaling tricks were employed to build a successful system.

Pros and Cons of Neural Nets in RL

- Can deal with high-dimensional inputs
- Robust to sensor noise
- Convergence is slow
- Batch training is impossible
- Can fail to approximate value function