Overview of Week 2

- Concept learning: search in hypotheses space
- Version spaces: candidate elimination algorithm
- Using bias in concept learning
Concept Learning

Inferring a boolean function from labeled training examples.

Example: “user profile” for web browsing:

<table>
<thead>
<tr>
<th>Dom.</th>
<th>Plat.</th>
<th>Browser</th>
<th>Day</th>
<th>Screen</th>
<th>Cont.</th>
<th>Click?</th>
</tr>
</thead>
<tbody>
<tr>
<td>edu</td>
<td>Mac</td>
<td>Net3</td>
<td>Mon.</td>
<td>XVGA</td>
<td>America</td>
<td>Yes</td>
</tr>
<tr>
<td>com</td>
<td>Mac</td>
<td>NetCom</td>
<td>Tue.</td>
<td>XVGA</td>
<td>America</td>
<td>Yes</td>
</tr>
<tr>
<td>com</td>
<td>PC</td>
<td>IE</td>
<td>Sat.</td>
<td>VGA</td>
<td>Eur.</td>
<td>No</td>
</tr>
<tr>
<td>org</td>
<td>Unix</td>
<td>Net2</td>
<td>Wed.</td>
<td>XVGA</td>
<td>America</td>
<td>Yes</td>
</tr>
</tbody>
</table>
- Hypotheses H: Each $h \in H$ hypotheses is described by a conjunction of constraints on the above attributes (value, ?, ϕ).
- Target concept: Click $c : X \rightarrow 0, 1$
- Training examples D: positive and negative examples of target concept.

Determine: A hypothesis $h \in H$ s.t. $h(x) = c(x) \forall x \in X$.

Hypotheses Space

- Hypotheses language: Every attribute can be a specific value, a wildcard (?), or null (ϕ).
- If an instance i satisfies a hypothesis h, then i is a positive example (else i is a negative example).
- Let X be the set of instances. For the web example, $|X| = 2520$. (why?) How many possible concepts over X?
- Let H denote the set of all hypotheses representable in the hypotheses language.
- For the web example, number of *syntactically* distinct hypotheses is $H = 37800$ (why?)
- For the web example, number of *semantically* distinct hypotheses is $H = 11521$ (why?)
Inductive learning hypotheses

Any hypotheses found to approximate the target function over a sufficiently large set of training examples will also approximate the target function well over unobserved examples.

Why is this true?

Sampling: Statistical theory for inferring population parameters from samples.

Occam’s razor: “Small” hypotheses are likely to be more accurate than larger ones. (e.g. Kepler’s law vs. epicycles).

- David Hume: An inquiry concerning human understanding (1748).

Concept Learning as Search in Hypotheses Space

* The hypotheses can be partially ordered under \textit{more general than or equal to} (\geq).

* $h_1 \geq_g h_2$ iff

\[
(\forall x \in X) \ (h_2(x) = 1) \Rightarrow (h_1(x) = 1)
\]

* Example:
 - $h_1 = <edu, Mac, ?, Mon, ?, ?>$
 - $h_2 = <edu, Mac, IE, Mon, ?, Europe >$

* Why is \geq_h a partial ordering?
* Give an example where neither $h_1 \geq_g h_2$ nor $h_2 \geq_g h_1$.
Partial Ordering on Hypotheses Space

instances

x1 = <edu,Mac,IE,Mon,VGA,Eur>
x2 = <edu,PC,IE,Mon,VGA,Eur>

h1 = <edu,Mac,?,?,?,Eur>
h2 = <edu,?,?,IE,?,?,Eur>
h3 = <edu,?,?,?,?,Eur>

Find-S: Finding a Maximally Specific Hypothesis

1. Initialize h to the most specific hypothesis in H.

2. For each positive instance i, do
 - For each attribute constraint a_i do
 If i is not satisfied by h, then replace a_i by the next more general constraint that is satisfied by i.

3. Output hypothesis h
Example of Find-S

Instances

Hypotheses

Specific

General

x1 = <edu,Mac,Net3,Mon,XVGA,America>, +

h0 = <0,0,0,0,0,0>

h1 = <edu,Mac,Net3,Mon,XVGA,America>

h4 = <?,?,?,?,XVGA,America>

h4 = <?,?,?,?,XVGA,America>

h1 = <edu,Mac,Net3,Tue,XVGA,America>, +

h2 = <?,Mac,Net3,?,XVGA,America>

h3 = <?,Mac,Net3,?,XVGA,America>

h4 = <?,?,?,?,XVGA,America>

x2 = <com,Mac,Net3,Tue,XVGA,America>, +

x3 = <com,PC,IE,Sat,VGA,Eur>, -

x4 = <org,Unix,Net2,Wed,XVGA,America>, +

Problems with Find-S Algorithm

- Convergence: cannot determine if unique hypothesis
- Singleton hypotheses set: why keep only the most specific h?
- Consistency: what if examples are inconsistent or noisy?
- Multiple specific hypotheses: need not be only one.
Version Space

A hypothesis h is **consistent** with a set of training examples D iff $h(x) = c(x)$ for every $<x, c(x)> \in D$.

The **version space** $VS_{H,D}$ with respect to hypothesis space H and training examples D is the set of all hypotheses $h \in H$ that are consistent with examples in D.

How to compute the version space?

- List-then-eliminate: obvious but impractical idea.
- Candidate elimination (Mitchell, Ph.d. thesis)

Compact Representation of Version Spaces

Key idea: keep only the **boundary** sets, exploiting the partial ordering of the hypotheses space.

General boundary set G: is the set of maximally general members of H consistent with training data D.

$$\{h \in H \mid Consistent(h, D) \land \neg \exists g' \in H \left((g' >_g h) \land Consistent(g', D) \right) \}$$

Specific boundary set S: is the set of maximally specific members of H consistent with training data D.

$$\{h \in H \mid Consistent(h, D) \land \neg \exists g' \in H \left((h >_g g') \land Consistent(g', D) \right) \}$$
Candidate Elimination Algorithm – I

- $G \leftarrow$ the set of maximally general hypotheses in H.
- $S \leftarrow$ the set of maximally specific hypotheses in H.
- For each training example d, do:
 - If d is a positive example:
 * Remove from G any hypothesis inconsistent with d.
 * For each hypothesis s in S that is not consistent with d
 - Remove s from S
 - Add to S all minimal generalizations h of s s.t. h is consistent with d, and some $g \in G$ is more general than h.
 * Remove from S any hypothesis that is more general than another hypothesis in S.

Candidate Elimination Algorithm – II

- If d is a negative example:
 - Remove from S any hypothesis inconsistent with d.
 - For each hypothesis g in G that is not consistent with d
 * Remove g from G
 * Add to G all minimal specializations h of g s.t. h is consistent with d, and some $s \in S$ is more specific than h.
 * Remove from G any hypothesis that is less general than another hypothesis in G.
Version Space Example

S_0: \{0,0,0,0,0\}

G_0: \{?, ?, ?, ?, ?\}

Version Space Example (continued)

S_1: \{edu,Mac,Net3,Mon,XVGA,America\}

G_1: \{?, ?, ?, ?, ?\}

<edu,Mac,Net3,Mon,XVGA,America>, +
Version Space Example (continued)

S2: \{<?,Mac,?,?,XVGA,America>\}

G2: \{<?,?,?,?,?>\}

<com,Mac,NetCom,Tue,XVGA,America>, +

Version Space Example (continued)

S3: \{<?,Mac,?,?,XVGA,America>\}

G3: \{<?,Mac,?,?,?,>, <?,?,?,?,XVGA,?>, <?,?,?,?,America>\}

<com,PC,IE,Sat,VGA,Eur>, -
Active Learning with Version Spaces

S3:

G3:

What should be the best new example?

<table>
<thead>
<tr>
<th>Dom.</th>
<th>Plat.</th>
<th>Browser</th>
<th>Day</th>
<th>Screen</th>
<th>Cont.</th>
<th>Click?</th>
</tr>
</thead>
<tbody>
<tr>
<td>edu</td>
<td>Mac</td>
<td>IE</td>
<td>Fri.</td>
<td>XVGA</td>
<td>America</td>
<td>?</td>
</tr>
<tr>
<td>com</td>
<td>PC</td>
<td>Net.Com</td>
<td>Wed.</td>
<td>VGA</td>
<td>Europe</td>
<td>?</td>
</tr>
<tr>
<td>org</td>
<td>Unix</td>
<td>Net2</td>
<td>Wed.</td>
<td>XVGA</td>
<td>America</td>
<td>?</td>
</tr>
</tbody>
</table>
Version Space Example (continued)

S4: \{<?,?,?,?,XVGA,America>\}

G4: \{<?,?,?,?,XVGA,?>, <?,?,?,?,America>\}

<org,Unix,Net2,Wed,XVGA,America>, +

Version Space Converged

S5: \{<?,?,?,?,XVGA,?>\}

G5: \{<?,?,?,?,XVGA,?>\}

<com,Unix,Net2,Wed,XVGA,Europe>, +
Applications of Version Spaces

- META-DENDRAL: Predict molecular structure from mass spectrometer data.

![Graph showing intensity vs. mass-to-charge ratio]

- LEX: Learn heuristics for symbolic integration.

\[\int u dv = uv - \int v du \]

+: \(\int 3x \cos(x) \, dx \) with \(u = 3x \) and \(dv = \cos(x) \, dx \).

-: \(\int 5x \sin(x) \, dx \) with \(u = \sin(x) \) and \(dv = 5x \, dx \).

VS has Exponential Sample Complexity

Let the concept be \(A_1 = \text{true} \). Let instances be described by \(n \) boolean attributes. Consider the sequence of \(2^{n-2} \) examples:

- \(A_1 = \text{true} \land A_2 = \text{true} \ldots A_{n-1} = \text{false} \land A_n = \text{false} \)

- \(A_1 = \text{true} \land A_2 = \text{true} \ldots A_{n-1} = \text{false} \land A_n = \text{true} \)

- \(A_1 = \text{true} \land A_2 = \text{true} \ldots A_{n-1} = \text{true} \land A_n = \text{false} \)

- \(A_1 = \text{true} \land A_2 = \text{true} \ldots A_{n-1} = \text{true} \land A_n = \text{true} \)

Note that the VS must still contain \(A_1 = \text{true}, A_2 = \text{true}, A_1 = \text{true} \land A_2 = \text{true} \).
Bias in Concept Learning

- **Bias** is defined as any criteria (other than strict consistency with the training examples) used to select one specific generalization over another.

- **Source of bias:**
 - Hypothesis (generalization) language: (e.g. only ⊗ allowed).
 - Generalization algorithm: Find-s.

- What is an unbiased generalization language (algorithm) for the space of instances described by n boolean attributes?

Bias-Free Learning

- Assume H can represent all possible boolean formulae on the attributes (conjunctions, disjunctions, negations).

- Example: (Platform=Macintosh ∨ Platform = Unix) ∧ ¬ (Platform = PC).

- Given positive examples x_1, \ldots, x_i and negative examples y_1, \ldots, y_j, what are the S and G sets?
 - $S = x_1 ∨ x_2 ∨ \ldots x_i$
 - $G = \neg y_1 ∧ \neg y_2 \ldots \neg y_j$

- Bias-free learning does not allow making inductive leaps beyond the observed training instances!
Bias cannot be eliminated!

- An unbiased generalization algorithm (e.g., version spaces) that uses an unbiased hypothesis space (e.g., all boolean functions) can never go beyond the observed training instances.

- The power of a learning system follows completely from the appropriateness of its biases.

- Machine learning is the study of bias.

- Useful classes of biases:
 - Factual knowledge of the domain
 - Intended use of the learned generalization
 - Knowledge about source of training data
 - Simplicity and generality
 - Analogy with previously learned generalizations

Probability Distribution on Instances

- For any given instance space, there is a non-uniform likelihood of seeing different instances. We can represent this situation by imagining that there is a probability distribution on the space of instances.

- The learner does not know this distribution ahead of time, but is allowed to assume that it is fixed. Thus, a learner trained on one particular distribution should only be tested on that distribution.
Approximate Concept Learning

- Requiring a learner to learn the right concept is too strict (e.g. is there a “right” concept of tree?).
- Instead, we relax this requirement and allow a learner to produce a good approximation to the actual concept.
- Let $P(x)$ be a fixed probability distribution on the instance space. Let c be the target concept, and let h be the concept produced by the learner.
- Let $S = \{x | c(x) \neq h(x)\}$ be the set of instances on which the target concept and the approximation disagree. Let ϵ be an error tolerance parameter where $0 < \epsilon < 1$. Then h is a good approximation (to within ϵ) of c if and only if:

$$\sum_{x \in S} P(x) \leq \epsilon$$

Approximation in Concept Learning

$S = c-h \cup h-c$
Approximate Learning using Version Spaces

- We say a version space is **exhausted** if the S and G sets are one and the same singleton set. We already know this is too hard.

- Given a hypothesis space H, a target concept c, a sequence of examples Q of c, and an error tolerance ϵ, the version space of Q (w.r.t. H) is ϵ-exhausted if it does not contain any hypothesis that has (true) error more than ϵ (w.r.t c).

- We will only require that the learner produce an ϵ-exhausted version space.

- Furthermore, we will solve the problem of exponentially large G sets by simply computing any one hypothesis h that has error $\leq \epsilon$.

- **Question**: How many examples are needed to ϵ-exhaust a version space?

Probabilistic Learning

- Assume training examples are drawn **independently and randomly** from an unknown but fixed distribution P on the instance space.

- We only require that the learner succeed in producing a good approximation to the target concept **with high probability**.

- Specifically, given a confidence parameter δ, we require the learner to be able to ϵ-exhaust a version space with probability at least $1 - \delta$.

- So how many examples are needed for the learner to ϵ-exhaust a version space with probability $\geq 1 - \delta$?
Sample Complexity for Probably Approximate Version Spaces

Theorem: Let H be a finite space of hypotheses, and denote its size by $|H|$. Given m independently drawn random examples (drawn using a fixed distribution P) of some concept c in H, for any $0 < \epsilon < 1$, the probability that the version space consistent with the m examples is not ϵ-exhausted is $\leq |H|e^{-\epsilon m}$.

Proof: Let h_1, \ldots, h_k be hypotheses in H that have error $> \epsilon$. We will not ϵ-exhaust the version space iff one of these h_i is consistent with all m training examples.

Since each bad hypothesis h_i has error $> \epsilon$, an individual example is consistent with a given bad h_i with probability $\leq 1 - \epsilon$.

The same h_i is consistent with all m examples with probability $\leq (1 - \epsilon)^m$.

Now the probability of any h being consistent with all m examples $\leq k(1 - \epsilon)^m$.

Since $k \leq |H|$, and $(1 - \epsilon)^m < e^{-\epsilon m}$, the result follows.