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Abstract
We present a weakly-supervised visual data mining ap-

proach that discovers connections between recurring mid-
level visual elements in historic (temporal) and geographic
(spatial) image collections, and attempts to capture the un-
derlying visual style. In contrast to existing discovery meth-
ods that mine for patterns that remain visually consistent
throughout the dataset, our goal is to discover visual ele-
ments whose appearance changes due to change in time or
location; i.e., exhibit consistent stylistic variations across
the label space (date or geo-location). To discover these
elements, we first identify groups of patches that are style-
sensitive. We then incrementally build correspondences to
find the same element across the entire dataset. Finally,
we train style-aware regressors that model each element’s
range of stylistic differences. We apply our approach to date
and geo-location prediction and show substantial improve-
ment over several baselines that do not model visual style.
We also demonstrate the method’s effectiveness on the re-
lated task of fine-grained classification.

1. Introduction
“Learn how to see. Realize that everything connects to

everything else.” – Leonardo da Vinci

Long before the age of “data mining”, historians, geog-

raphers, anthropologists, and paleontologists have been dis-

covering and analyzing patterns in data. One of their main

motivations is finding patterns that correlate with spatial

(geographical) and/or temporal (historical) information, al-

lowing them to address two crucial questions: where? (geo-

localization) and when? (historical dating). Interestingly,

many such patterns, be it the shape of the handle on an

Etruscan vase or the pattern of bark of a Norwegian pine,

are predominantly visual. The recent explosion in the sheer

volume of visual information that humanity has been cap-

turing poses both a challenge (it’s impossible to go through

by hand), and an opportunity (discovering things that would

never have been noticed before) for these fields. In this
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Figure 1. Given historic car images, our algorithm is not only able

to automatically discover corresponding visual elements (e.g., yel-

low, green boxes) despite the large visual variations, but can model

these variations to capture the changes in visual style across time.

work, we take the first steps in considering temporally-

as well as spatially-varying visual data and developing a

method for automatically discovering visual patterns that

correlate with time and space.

Of course, finding recurring visual patterns in data un-

derlies much of modern computer vision itself – it is what

connects the disparate fragments of our visual world into

a coherent narrative. At the low level, this is typically

done via simple unsupervised clustering (e.g., k-means in

visual words [25]). But clustering visual patterns that

are more complex than simple blobs, corners and oriented

bars turns out to be rather difficult because everything be-

comes more dissimilar in higher dimensions. The emerg-

ing subfield of visual category discovery/visual data min-

ing [24, 9, 14, 19, 5, 23, 4, 21, 6] proposes ways to address

this issue. Most such approaches look for tight clumps in

the data, discovering visual patterns that stay globally con-

sistent throughout the dataset. More recent discriminative

methods, such as [23, 4], take advantage of weak supervi-

sion to divide the dataset into discrete subsets (e.g., kitchen

vs. bathroom [23], Paris vs. Not-Paris [4]) to discover

specific visual patterns that repeatedly occur in one subset

while not occurring in others.
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But in addition to the globally-consistent visual patterns

(e.g., the Pepsi logo is exactly the same all over the world)

and the specific ones (e.g., toilets are only found in bath-

rooms), much in our visual world is neither global nor spe-

cific, but rather undergoes a gradual visual change. This

is nowhere more evident than in the visual changes across

large extents of space (geography) and time (history). Con-

sider the three cars shown in Figure 1: one antique, one

classic, and one from the 1970s. Although these cars are

quite different visually, they clearly share some common

elements, e.g., a headlight or a wheel. But notice that even

these “common” elements differ substantially in their ap-

pearance across the three car types, making this a very chal-

lenging correspondence problem. Notice further that the

way in which they differ is not merely random (i.e., a statis-

tical “noise term”). Rather, these subtle yet consistent dif-

ferences (curvy vs. boxy hood, the length of the ledge under

the door, etc.) tend to reflect the particular visual style that

is both specific to an era yet changing gradually over time

(Figure 8). If now we were given a photo of a different car

and asked to estimate its model year, we would not only

need to detect the common visual elements on the new car

but also understand what its stylistic differences (e.g., the

length of that ledge) tell us about its age.

In this paper, we propose a method for discovering

connections between similar mid-level visual elements in

temporally- and spatially-varying datasets and modeling

their “visual style”. Here we define visual style as appear-

ance variations of the same visual element due to change

in time or location. Our central idea is to 1) create reli-

able generic visual element detectors that “fire” across the

entire dataset independent of style, and then 2) model their

style-specific differences using weakly-supervised image la-

bels (date, geo-location, etc.). The reason for doing the first

step is that each generic detector puts all of its detections

into correspondence (lower right in Figure 1), creating a

“closed-world” focused on one visual theme, where it is

much easier to “subtract away” the commonalities and fo-

cus on the stylistic differences. Furthermore, without con-

ditioning on the generic detector, it would be very difficult

to even detect the stylistically-informative features. For in-

stance, the ledge in Figure 1 (green box) is so tiny that it

is unlikely to be detectable in isolation, but in combination

with the wheel and part of the door (the generic part), it

becomes highly discriminable.

We evaluate our method on the task of date and geo-

location prediction in three scenarios: two historic car

datasets with model year annotations and a Street View im-

agery dataset annotated with GPS coordinates. We show

that our method outperforms several baselines, which do

not explicitly model visual style. Moreover, we also demon-

strate how our approach can be applied to the related task

of fine-grained recognition of birds.

2. Related work
Modeling Space and Time Geo-tagged datasets have

been used for geo-localization on the local [22, 12], re-

gional [2], and planetary [10] scales, but we are not aware

of any prior work on improving geo-location by explicitly

capturing stylistic differences between geo-informative vi-

sual elements (but see [4] for anecdotal evidence of such

possibility). Longitudinal (i.e., long-term temporal) visual

modeling has received relatively little attention. Most previ-

ous research has been on the special case of age estimation

for faces (see [8] for a survey). Recent work includes mod-

eling the temporal evolution of Web image collections [11]

and dating of historical color photographs [17]. We are not

aware of any prior work on modeling historical visual style.

Visual data mining Existing visual data mining/object

discovery approaches have been used to discover object

categories [24, 9, 19, 6], mid-level patches [23, 4, 20],

attributes [5, 21], and low-level foreground features [14].

Typically, an appropriate similarity measure is defined be-

tween visual patterns (i.e., images, patches, or contours)

and those that are most similar are grouped into discovered

entities. Of these methods, mid-level discriminative patch

mining [23, 4] shares the most algorithmic similarities with

our work; we also represent our visual elements with HOG

patches [3] and refine the clusters through discriminative

cross-validation training. However, unlike [23, 4] and all

existing discovery methods, we go beyond simply detect-

ing recurring visual elements, and model the stylistic differ-

ences among the common discovered elements.

Visual style analysis The seminal paper on “style-content

separation” [26] uses bilinear models to factor out the style

and content components in pre-segmented, pre-aligned vi-

sual data (e.g., images of letters in different fonts). While

we also use the term “style” to describe the differences

between corresponding visual elements, we are solving a

rather different problem. Our aim is to automatically dis-
cover recurring visual elements despite their differences in

visual style, and then model those differences. While our

“generic detectors” could perhaps be thought of as captur-

ing “content” (independent of style), we do not explicitly

factor out the style, but model it conditioned on the content.

Fine-grained categorization can also be viewed as a form

of style analysis, as subtle differences within the same

basic-level category differentiate one subordinate category

from another. Existing approaches use human-labeled at-

tributes and keypoint annotations [28, 7, 32, 1] or template

matching [31, 30]. Because these methods are focused

on classification, they limit themselves to the simpler vi-

sual world of manually-annotated object bounding boxes,

whereas our method operates on full images. Furthermore,

discovering one-to-one correspondences is given a pri-

mary role in our method, whereas in most fine-grained ap-



(a) Peaky (low-entropy) clusters (b) Uniform (high-entropy) clusters 

Figure 2. Mining style-sensitive visual elements. Clusters are considered style-sensitive if they have “peaky” (low-entropy) distribution

across time (a) and style-insensitive if their instances are distributed more uniformly (b). Notice how the high-entropy distributions (b)

represent not only style insensitivity (e.g., nondescript side of car) but also visually-noisy clusters. Both are disregarded by our method.

proaches the correspondences are already provided. While

template matching methods [31, 30] also try to discover cor-

respondences, unlike our approach, they do not explicitly

model the style-specific differences within each correspon-

dence set. Finally, these approaches have not been applied

to problems with continuous labels (regression), where cap-

turing the range of styles is particularly important.

Lastly, relative attributes [18] model how objects/scenes

relate to one another via ordered pairs of labels (A is “fur-

rier” than B). We also share the idea of relating things.

However, instead of using strong supervision to define these

relationships, we automatically mine for visual patterns that

exhibit such behavior.

3. Approach
Our goal is to discover and connect mid-level visual el-

ements across temporally- and spatially-varying image col-

lections and model their style-specific differences. We as-

sume that the image collections are weakly supervised with

date or location labels.

There are three main steps to our approach: First, as ini-

tialization, we mine for “style-sensitive” image patch clus-

ters, that is, groups of visually similar patches with similar

labels (date or location). Then, for each initial cluster, we

try to generalize it by training a generic detector that com-

putes correspondences across the entire image collection to

find the same visual element independent of style. Finally,

for each set of correspondences, we train a style-aware re-

gression model that learns to differentiate the subtle stylistic

differences between different instances of the same generic

element. In the following sections, we describe each of the

steps in turn. We will use an image collection of historic

cars as our running example, but note that there is nothing

specific to cars in our algorithm.

3.1. Mining style-sensitive visual elements
Most recurring visual patterns in our data will be ex-

tremely boring (sky, asphalt, etc.). They will also not ex-

hibit any stylistic variation over time (or space), and not be

of any use in historical dating (or geo-localization) – after

all, asphalt is always just asphalt! Even some parts of the

car (e.g., a window) do not really change much over the

decades. On the other hand, we would expect the shape of

the hood between two 1920s cars to be more similar than

between a 1920s and a 1950s car. Therefore, our first task

is to mine for visual elements whose appearance somehow

correlates with its labels (i.e., date or location). We call vi-

sual elements that exhibit this behavior style-sensitive.

Since we do not know a priori the correct scale, loca-

tion, and spatial extent of the style-sensitive elements, we

randomly sample patches across various scales and loca-

tions from each image in the dataset. Following [4], we

represent each patch with a Histogram of Gradients (HOG)

descriptor [3], and find its top N nearest neighbor patches

in the database (using normalized correlation) by matching

it to each image in a sliding window fashion over multiple

scales and locations. To ensure that redundant overlapping

patches are not chosen more than once, for each matching

image we only take its best matching patch.

Each sampled patch and its N nearest neighbors ideally

form a cluster of a recurring visual element (although many

clusters will be very noisy due to inadequacies of simple

HOG matching). To identify the style-sensitive clusters,

we can analyze the temporal distribution of labels for each

cluster’s instances. Intuitively, a cluster that has a tightly-

grouped (“peaky”) label distribution suggests a visual ele-

ment that prefers a particular time period, and is thus style-

sensitive, while a cluster that has a uniform label distribu-

tion suggests a pattern that doesn’t change over time. As

extra bonus, most noisy clusters will also have a uniform

distribution since it is very unlikely to be style-sensitive by

random chance. To measure the style-sensitivity of clus-

ter c, we histogram its labels and compute its entropy:

E(c) = −∑n
i=1 H(i) · log2 H(i), where H(i) denotes the

histogram count for bin i and n denotes the number of quan-

tized label bins (we normalize the histogram to sum to 1).

We then sort the clusters in ascending order of entropy. Fig-

ure 2 (a) and (b) show examples of the highest and low-

est ranked clusters for the car dataset images. Notice how

the highest ranked clusters correspond to style-sensitive car

elements, while the lowest ranked clusters contain noisy

or style-insensitive ones. We take the top M clusters as
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Figure 3. To account for a visual element’s variation in style over space or time, we incrementally revise its detector by augmenting the

positive training set with the top detections fired only on images with “nearby” labels. This produces an accurate generic detector that is

invariant to the visual element’s changes in style.
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Figure 4. Establishing correspondences across time. (a) Correspondences made using the discriminative patch mining approach [23, 4]

using a positive set of 1920s frontal cars. Note how the correspondences break down a third of the way through. (b) Starting with the same

initial set of 1920s frontal cars, our algorithm gradually expands the positive set over the continuous label space until it is able to connect

the same visual element across the entire temporal extent of the dataset.

our discovered style-sensitive visual elements, after reject-

ing near-duplicate clusters (measured by spatial overlap of

more than 25% between any 5 of their cluster members).

3.2. Establishing correspondences
Each of the top M clusters corresponds to a style-

sensitive visual element in a local region of the label space.

A few of these elements represent very specific visual fea-

tures that just do not occur in other parts of the data (e.g., car

tailfins from 1960s). But most others have similar counter-

parts in other time-periods and our goal is to connect them

together, which will allow us to model the change in style

of the same visual element over the entire label space. For

instance, one of the style-sensitive elements could represent

frontal cars from 1920s. We want to find corresponding

frontal car patches across all time periods.

The same visual element, however, can look quite dif-

ferent across the label space, especially over larger tempo-

ral extents (Figure 1). To obtain accurate correspondences

across all style variations, we propose to train a discrimi-

native detector using an iterative procedure that exploits the

continuous nature of the label space. In general, we expect

the appearance of a visual element to change gradually as a

function of its label. Our key idea is to initialize the detector

using a style-sensitive cluster as the initial positive training

data, but then incrementally revise it by augmenting the pos-

itive set with detections fired only on images with “nearby”

labels (e.g., decades), as shown in Figure 3.

Specifically, we first train a linear SVM detector with the

cluster patches as positives and patches sampled from thou-

sands of random Flickr images as negatives. These nega-

tives will make the detector discriminative against generic

patterns occurring in the “natural world” [23], which helps

it to fire accurately on unseen images. We then incremen-

tally revise the detector. At each step, we run the current

detector on a new subset of the data that covers a slightly

broader range in label space, and retrain it by augmenting

the positive training set with the top detections. We repeat

this process until all labels have been accounted for. Mak-

ing these transitive connections produces a final generic de-

tector that fires accurately across the entire label space, as

shown in Figure 4 (b). Note that automatic discovery of

transitive visual correspondences across a dataset is very

much in the spirit of the Visual Memex [16] opening up

several promising future directions for investigation.

There is an important issue that we must address to en-

sure that the detector is robust to noise. The initial cluster

can contain irrelevant, outlier patches, since some of the

top N nearest neighbors of the query patch could be bad

matches. To prune out the noisy instances, at each step of

the incremental revision of our detector, we apply cross-

validation training [23, 4]. Specifically, we create multiple

partitions of the training set and iteratively refine the cur-

rent detector by: (1) training on one partition; (2) testing on

another; (3) taking the resulting top detections as the new

training instances; and (4) repeating steps 1-3 until conver-

gence, i.e., the top detections do not change. Effectively,

at each iteration, the detector learns to boost the common

patterns shared across the top detections and down-weights

their discrepancies without over-fitting, which leads to more
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Figure 5. Each CarDb and IMCDb image is labeled with the car’s model year. Each EDb image is labeled with its GPS coordinate.

accurate detections in the next iteration.

Note that a direct application of [23, 4] will not work

for our case of continuous, style-varying data because the

variability can be too great. Figure 4 (a) shows detections

made by a detector trained with [23, 4], using the same ini-

tial style-sensitive cluster of 1920s cars as positives. The

detector produces accurate matches in nearby decades, but

the correspondence breaks down across larger temporal ex-

tents because it fails to model the variation in style.

Finally, we fire each trained generic detector on all im-

ages and take the top detection per image (and with SVM

score greater than -1) to obtain the final correspondences.

3.3. Training style-aware regression models

The result of the previous step is a set of generic mid-

level detectors, each tuned to a particular visual element

and able to produce a set of corresponding instances under

many different styles. Now we are finally ready to model

that variation in style. And because the correspondences

are so good, we can now forget about the larger dataset and

focus entirely on each set of corresponding instances in iso-

lation, making our modeling problem much simpler. The

final step is to train a style-aware regressor for each element

that models its stylistic variation over the label space.

It is safe to assume that style will not change linearly

over the label space (e.g., with cars, it is possible that stylis-

tic elements from one decade could be reintroduced as “vin-

tage” in a later decade). To account for this, we train a

standard non-linear Support Vector Regressor (SVR) with

an ε-insensitive loss function using ground-truth weakly-

supervised image labels (e.g., date, geo-location) as the

target score. We use Gaussian kernels: K(xi, xj) =
exp(−γ−1||xi − xj ||2), where γ is the mean of the pair-

wise distances among all instances and xi is the HOG fea-

ture for instance i. Under this kernel, instances with similar

appearance are most likely to have similar regression out-

puts. Furthermore, to handle possible mis-detections made

by the generic detector which could add noise, we weight

each instance proportional to its detection score when train-

ing the SVR. (We map a detection score s to a weight in

[0,1], via a logistic function 1/(1 + exp(−2s)).) Each re-

sulting model captures the stylistic differences of the same

visual element found by the generic detector.

4. Results
In this section, we 1) evaluate our method’s ability to pre-

dict date/location compared to several baselines, 2) provide

in-depth comparisons to the discriminative patch mining ap-

proach of [23], 3) show qualitative examples of discovered

correspondences and learned styles, and 4) apply our ap-

proach to fine-grained recognition of birds.

Datasets We use three datasets: 1) Car Database (CarDb):

13,473 photos of cars made in 1920-1999 crawled from

www.cardatabase.net; 2) Internet Movie Car Database (IM-

CDb): 2,400 movie images of cars made in 1920-1999

crawled from www.imcdb.org; and 3) East Coast Database

(EDb): 4,455 Google Street View images along the eastern

coasts of Georgia, South Carolina, and North Carolina. Ex-

ample images are shown in Figure 5. CarDb and IMCDb

images are labeled with the model year of the main car in

the image, and EDb images are labeled with their GPS co-

ordinates. These are the “style” labels and the only super-

visory information we use. For EDb, since our SVRs ex-

pect 1D outputs (although a multivariate regression method

could also be used), we project the images’ 2D GPS coor-

dinates to 1D using PCA (this works because the area of

interest is roughly linear, i.e., long and narrow, see Figure 5

(c)). These datasets exhibit a number of challenges includ-

ing clutter, occlusion, scale, location and viewpoint change,

and large appearance variations of the objects. Importantly,

unlike standard object recognition datasets, ours have con-

tinuous labels. We partition the CarDb and EDb datasets

into train/test sets with 70/30% splits. We evaluate on all

datasets, and focus additional analysis on CarDb since it

has the largest number of images.

Image-level date/location prediction To evaluate on a

label prediction task, we need to combine all of our visual

element predictors together. We train an image-level predic-

tion model using as features the outputs of each style-aware

regressor on an image. Specifically, we represent an image

I with feature φ(I), which is the concatenation of the max-

imum SVM detection scores of the generic detectors (over

the image) and the SVR scores of their corresponding style-

aware regressors. When testing on EDb, we aggregate the

features in spatial bins via a spatial pyramid [13, 15], since

we expect there to be spatial consistency of visual patterns

across images. We use these features to train an image-level
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Figure 6. Box plots showing date and location prediction error on

the CarDb and EDb datasets, respectively. Lower values are bet-

ter. Our approach models the subtle stylistic differences for each

discovered element in the data, which leads to lower error rates.

Gaussian SVR. This model essentially selects the most use-

ful style-aware regressors for predicting style given the en-

tire image. To ensure that the image-level model does not

overfit, we train it on a separate validation set.

Baselines For date/location prediction, we compare to

three baselines: bag-of-words (BOW), spatial pyramid

(SP) [13], and Singh et al. [23]. For the first two, we de-

tect dense SIFT features, compute a global visual word dic-

tionary on the full dataset, and then train an intersection-

kernel SVR using the date/location labels. For Singh et

al. [23], which mines discriminative patches but does not

model their change in style, we adapt the approach to train

date/location-specific patch detectors using the initial style-

sensitive clusters discovered in Sec. 3.1. Specifically, we

take each specific cluster’s instances as positives and all

patches from the remaining training images that do not

share the same labels (with a small “don’t care” region in

between) as negatives. Now, just like in the previous para-

graph, we concatenate the max output of the detectors as

features to train an image-level Gaussian SVR. We opti-

mize all baselines’ parameters by cross-validation.

Implementation details We sample 80x80 pixel patches

over an image pyramid at 5 scales (i.e., min/max patch is

80/320 pixels wide in original image), and represent them

with a 10x10x31 HOG descriptor [3]. For EDb patches, we

augment HOG with a 10x10 tiny-image in Lab colorspace

when training the style-aware SVRs. We set N = 50, n =
80, and M = 80, 315 for CarDb and EDb, respectively.

For our generic SVM detectors, we fix Csvm = 0.1, and

cover 1/8 of the label-space at each training step; CarDb:

10 years, EDb: 66 miles. For our SVRs, we fix ε = 0.1 and

set Csvr = 100 and 10 for CarDb and EDb, respectively,

tuned using cross-validation on the training set.

4.1. Date and location prediction accuracy
We first evaluate our method’s ability to predict the cor-

rect date/geo-location of the images in CarDb/EDb. Fig-

ure 6 and Table 1 (top rows) show the absolute error rates for

all methods. This metric is computed by taking the absolute

difference between the ground-truth and predicted labels.

Our approach outperforms all baselines on both datasets.

The baselines have no mechanism to explicitly model

Ours Singh et al. [23, 4] SP [13] BOW

CarDb (years) 8.56 9.72 11.81 15.39

EDb (miles) 77.66 87.47 83.92 97.78

IMCDb (years) 13.53 15.32 17.06 18.65

Table 1. Mean absolute error on CarDb, EDb, and IMCDb for all

methods. The result on IMCDb evaluates cross-dataset general-

ization performance. Lower values are better.

stylistic differences as they are either mining discrimi-

nate patches over a subregion in label space (Singh et al.)

or using quantized local features (BOW and SP) that re-

sult in loss of fine detail necessary to model subtle stylis-

tic changes. Without explicitly making connections over

space/time, the baselines appear to have difficulty telling

apart signal from noise. In particular, we show substan-

tial improvement on CarDb, because cars exhibit more pro-

nounced stylistic differences across eras that require accu-

rate modeling. The stylistic differences in architecture and

vegetation for EDb are much more subtle. This makes

sense, since the geographic region of interest only spans

about 530 miles along the U.S. east coast. Still, our method

is able to capture more of the stylistic differences to pro-

duce better results. Note that chance performance is around

19 years and 113 miles for CarDb and EDb, respectively;

all methods significantly outperform chance, which shows

that stylistic patterns correlated with time/location are in-

deed present in these datasets.

Figure 7 shows some discovered correspondences. No-

tice the stylistic variation of the car parts over the decades

(e.g., windshield) and the change in amount/type of vegeta-

tion from north to south (e.g., trees surrounding the houses).

In Figure 8 we visualize the learned styles of a few style-

aware regressors on CarDb by averaging the most confident

detected instances of each predicted decade.

4.2. Cross-dataset generalization accuracy
Recent work on dataset bias [27] demonstrated that train-

ing and testing on the same type of data can dramatically

over-estimate the performance of an algorithm in a real-

world scenario. Thus, we feel that a true test for an algo-

rithm’s performance should include training on one dataset

while testing on a different one, whenever possible.

To evaluate cross-dataset generalization performance,

we take the models trained on CarDb and test them on IM-

CDb. The third row in Table 1 shows the result. The er-

ror rates have increased for all methods compared to those

on CarDb (with BOW now almost at chance level!). Over-

all, IMCDb is more difficult as it exhibits larger appear-

ance variations due to more significant changes in scale,

viewpoint, and position of the cars. CarDb, on the other

hand, is a collection of photos taken by car-enthusiasts, and

thus, the cars are typically centered in the image in one of

a few canonical viewpoints. Note also that the gap between

BOW and SP is smaller compared to that on CarDb. This
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Figure 7. Example correspondences. Notice how a visual element’s appearance can change due to change in time or location.
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Figure 8. We visualize the styles that a single style-aware regressor

has learned by averaging the predictions for each decade.

is mainly because spatial position is ignored in BOW while

it is an important feature in SP. Since the objects’ spatial

position in IMCDb is more varied, SP tends to suffer from

the different biases. Since our generic detectors are scale-

and translation-invariant, we generalize better than the base-

lines. Singh et al. is also scale- and translation-invariant,

and thus, shows better performance than BOW and SP. Still,

ours retains a similar improvement over that baseline.

4.3. Detailed comparisons to Singh et al. [23]
In this section, we present detailed comparisons to Singh

et al. [23], which is similar to our method but does not cap-

ture the style-specific differences.

Robustness to number of detectors Figure 9 (left) plots

the geo-location prediction error as a function of the num-

ber of detectors on EDb for the two methods (the curve av-

erages the error rates over five runs; in each run, we ran-

domly sample a fixed number of detectors, and correspond-

ing style-aware models for ours, among all 315 detectors to

train the image-level SVR). Our approach outperforms the

baseline across all points, saturating at a much lower error

rate. This result demonstrates that when the visual patterns

in the data change subtly, we gain a lot more from being

style-aware than being discriminative.

We also analyze how well our models generalize across

the label space. Using generic detectors initialized only

with the visual patterns discovered within a specific decade

(which results in 10 detectors), we train the corresponding

style-aware regression models. We then use their outputs

to train the image-level regressor. Across all eight differ-

ent decade initializations, we find our final mean prediction

error rates to be quite stable (∼10 years). This shows our

approach’s generalizability and robustness to initialization.
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Figure 9. Varying the number of detectors (left), and visual consis-

tency of correspondences (right). Lower/higher curves are better.

Visual consistency of correspondences We next evalu-

ate the quality of our discovered correspondences to that of

Singh et al. using a purity/coverage plot. Purity is the % of

cluster members that belong to the same visual element and

coverage is the number of images covered by a given clus-

ter. These are standard metrics used to evaluate discovery

algorithms, and Singh et al. already showed superior perfor-

mance over common feature/region clustering approaches

using them. Thus, we feel it is important to evaluate our ap-

proach using the same metrics. We randomly sample 80 test

images (10 per decade) from CarDb, and randomly sample

15 generic detectors and 15 discriminative detectors for ours

and the baseline, respectively. We fire each detector and

take its highest-scoring detected patch in each image. We

sort the resulting set of detections in decreasing detection

score, and ask a human labeler to mark the inliers/outliers

(inliers are majority of high-scoring detections belonging to

the same visual element). Using these human-marked an-

notations and treating each set of detections as a cluster, we

compute average purity as a function of coverage.

Figure 9 (right) shows the result. We generate the curve

by varying the threshold on the detection scores to define

cluster membership and average the resulting purity scores

(e.g., at coverage = 0.1, purity is computed using only the

top 10% scoring detections in each cluster). Both ours and

the baseline produce high purity when the clusters consist of

only the highest-scoring detections. As more lower-scoring

instances are included in the clusters, the baseline’s purity

rates fall quickly, while ours fall much more gracefully.

This is because the baseline is trained to be discrimina-

tive against visual elements from other time periods. Thus,

it succeeds in detecting corresponding visual elements that

are consistent within the same period, but cannot generalize

outside of that period well. Our detectors are trained to be

generic and thus able to generalize much better, maintaining



Ours Zhang et al. [32] Berg & Belhumeur [1]

Mean Accuracy (%) 41.01 28.18 56.89

Table 2. Fine-grained recognition on CUB-200-2011 [29].
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Figure 10. Example correspondences on CUB-200-2011.

high purity with increased coverage.

4.4. Fine-grained recognition
Finally, the idea of first making visual connections across

a dataset to create a “closed world”, and then modeling the

style-specific differences is applicable to several other do-

mains. As one example, we adopt our method (with minor

modifications) to the task of fine-grained recognition of bird

species, where the labels are discrete.

Specifically, we first mine recurring visual elements that

repeatedly fire inside the foreground bounding box (of any

bird category) and not on the background (cf. style-sensitive

clusters). We take the top-ranked clusters and train generic

unsupervised bird-part detectors. Then, given the corre-

spondence sets produced by each detector, we train 1-vs-

all linear SVM classifiers to model the style-specific dif-

ferences (cf. style-aware SVRs). Finally, we produce

an image-level representation, pooling the maximum re-

sponses of the detectors and corresponding classifier out-

puts in a spatial pyramid. We use those features to train

image-level 1-vs-all linear SVM classifiers.

We evaluate classification accuracy on the CUB-200-

2011 dataset [29] using the provided bounding box annota-

tions. We compare to the state-of-the-art methods of [32, 1],

which define pose-normalized kernels and part-based fea-

tures, respectively. To our knowledge, these are the only

methods that test on all 200 categories on this dataset to

date. Importantly, unlike our method, these baselines use

ground-truth part annotations for training.

Table 2 shows mean classification accuracy over all

200 bird categories. While our approach performs worse

than [1], it outperforms [32] despite using less supervision

than either. We attribute this to our generic detectors pro-

ducing accurate correspondences for the informative bird

parts (see Figure 10), allowing our style-specific models to

better discriminate the fine-grained differences.
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