Announcements

- PS3 out; due 6/9, 11:59 pm

Outline

- Last time: window-based generic object detection
 - basic pipeline
 - face detection with boosting as case study
Window-based models
Building an object model

Given the representation, train a binary classifier

Car/non-car Classifier

Yes, car.
No/not a car.

Window-based models
Generating and scoring candidates

Given new image: 1. Slide window 2. Score by classifier

Feature extraction

Car/non-car Classifier

Training examples
Viola-Jones detector: summary

- A seminal approach to real-time object detection
- Training is slow, but detection is very fast
- Key ideas
 - Integral images for fast feature evaluation
 - Boosting for feature selection

Boosting intuition

Weak Classifier 1

Weights Increased

Boosting illustration

Weak Classifier 2
Weights Increased

Boosting illustration

Weak Classifier 3

Final classifier is a combination of weak classifiers
Discriminative classifier construction

- Nearest neighbor
 - Shakhnarovich, Viola, Darrell 2003
 - Berg, Berg, Malik 2005...

- Support Vector Machines
 - Guyon, Vapnik
 - Heisele, Same, Poggio, 2001,...

- Neural networks
 - LeCun, Bottou, Bengio, Haffner 1998
 - Rowley, Baluja, Kanade 1998

- Boosting
 - Viola, Jones 2001
 - Torralba et al. 2004, Opelt et al. 2006, ...

- Conditional Random Fields
 - McCallum, Freitag, Pereira 2000; Kumar, Hebert 2003

Nearest Neighbor classification

- Assign label of nearest training data point to each test data point

- Voronoi partitioning of feature space for 2-category 2D data

- Closest to a positive example from the training set, so classify it as positive.
K-Nearest Neighbors classification

- For a new point, find the k closest points from training data
- Labels of the k points "vote" to classify

If query lands here, the 5 NN consist of 3 negatives and 2 positives, so we classify it as negative.

A nearest neighbor recognition example

Where in the World?

Where in the World?

6+ million geotagged photos by 109,788 photographers

Annotated by Flickr users
6+ million geotagged photos by 109,788 photographers

Quantitative Evaluation Test Set

Which scene properties are relevant?
A scene is a single surface that can be represented by global (statistical) descriptors

Global texture: capturing the “Gist” of the scene

Capture global image properties while keeping some spatial information

Which scene properties are relevant?

- Gist scene descriptor
- Color Histograms - L*A*B* 4x14x14 histograms
- Texton Histograms – 512 entry, filter bank based
- Line Features – Histograms of straight line stats
Im2GPS: Scene Matches

Im2GPS: Scene Matches
The Importance of Data

Feature Performance

Nearest neighbors: pros and cons

Pros:
- Simple to implement
- Flexible to feature / distance choices
- Naturally handles multi-class cases
- Can do well in practice with enough representative data

Cons:
- Large search problem to find nearest neighbors
- Storage of data
- Must know we have a meaningful distance function
Outline

- Discriminative classifiers
 - Boosting (last time)
 - Nearest neighbors
 - Support vector machines

Linear classifiers

Lines in \mathbb{R}^2

Let $w = \begin{bmatrix} a \\ c \end{bmatrix}$, $x = \begin{bmatrix} x \\ y \end{bmatrix}$

$$ax + cy + b = 0$$
Lines in \mathbb{R}^2

Let \(\mathbf{w} = \begin{bmatrix} a \\ c \end{bmatrix} \) and \(\mathbf{x} = \begin{bmatrix} x \\ y \end{bmatrix} \)

\[
ax + cy + b = 0 \\
\mathbf{w} \cdot \mathbf{x} + b = 0
\]

Let \(\mathbf{w} = \begin{bmatrix} a \\ c \end{bmatrix} \) and \(\mathbf{x} = \begin{bmatrix} x \\ y \end{bmatrix} \)

\[
ax + cy + b = 0 \\
\mathbf{w} \cdot \mathbf{x} + b = 0
\]

Let \(\mathbf{w} = \begin{bmatrix} a \\ c \end{bmatrix} \) and \(\mathbf{x} = \begin{bmatrix} x \\ y \end{bmatrix} \)

\[
ax + cy + b = 0 \\
\mathbf{w} \cdot \mathbf{x} + b = 0
\]

Distance from point \((x_0, y_0)\) to line

\[
D = \frac{|ax_0 + cy_0 + b|}{\sqrt{a^2 + c^2}}
\]

distance from point to line
Lines in \mathbb{R}^2

Let $w = \begin{bmatrix} a \\ c \end{bmatrix}$ and $x = \begin{bmatrix} x \\ y \end{bmatrix}$.

$$ax + cy + b = 0$$

$$w \cdot x + b = 0$$

$$D = \frac{|ax_0 + cy_0 + b|}{\sqrt{a^2 + c^2}} = \frac{w^T x_0 + b}{\|w\|}$$

distance from point to line

Linear classifiers

- Find linear function to separate positive and negative examples

$x_\text{positive}: \quad x \cdot w + b \geq 0$

$x_\text{negative}: \quad x \cdot w + b < 0$

Which line is best?

Support Vector Machines (SVMs)

- Discriminative classifier based on optimal separating line (for 2d case)

- Maximize the margin between the positive and negative training examples
Support vector machines

- Want line that maximizes the margin.

\[x, \text{ positive } (y_i = 1): \quad x \cdot w + b \geq 1 \]

\[x, \text{ negative } (y_i = -1): \quad x \cdot w + b \leq -1 \]

For support vectors, \(x \cdot w + b = \pm 1 \)

\[\text{Distance between point and line:} \quad \frac{|x \cdot w + b|}{||w||} \]

For support vectors:

\[M = \frac{1}{||w||} \]

\[\text{Therefore, the margin is} \quad \frac{2}{||w||} \]
Finding the maximum margin line

1. Maximize margin $2/||w||$
2. Correctly classify all training data points:
 - x, positive ($y_i = 1$): $x_i \cdot w + b \geq 1$
 - x, negative ($y_i = -1$): $x_i \cdot w + b \leq -1$

Quadratic optimization problem:

$$\begin{align*}
\text{Minimize} & \quad \frac{1}{2} w^T w \\
\text{Subject to} & \quad y_i (w \cdot x_i + b) \geq 1
\end{align*}$$

Finding the maximum margin line

- Solution: $w = \sum \alpha_i y_i x_i$

Finding the maximum margin line

- Solution: $w = \sum \alpha_i y_i x_i$

$\quad b = y_i - w \cdot x_i \quad$ (for any support vector)

$\quad w \cdot x + b = \sum \alpha_i y_i x_i \cdot x + b$

- Classification function:

$$\begin{align*}
f(x) &= \text{sign} (w \cdot x + b) \\
 &= \text{sign} \left(\sum_i \alpha_i y_i x_i \cdot x + b \right)
\end{align*}$$

If $f(x) < 0$, classify as negative,
if $f(x) > 0$, classify as positive

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition, Data Mining and Knowledge Discovery.
Questions

• What if the features are not 2d?
• What if the data is not linearly separable?
• What if we have more than just two categories?

Questions

• What if the features are not 2d?
 – Generalizes to d-dimensions – replace line with “hyperplane”
• What if the data is not linearly separable?
• What if we have more than just two categories?

Histograms of Oriented Gradients for Human Detection

Nuno R. Dalal and Bill Triggs
INRIA Rhône-Alpes, 655 avenue de l’Europe, Montbonnot 38334, France
(Nuno R.Dalal@inria.fr) http://www.inria.fr

Abstract

We study the question of human pose for robust visual recognition in unconstrained situations. We describe a computer vision system for human pose estimation on a test scene. After removing a large set of people that do not belong to the scene, we introduce a system that takes advantage of the use of Histograms of Oriented Gradient (HOG) descriptors for the detection of human bodies. The system performs a trimap of each image and uses a Support Vector Machine classifier to predict human positions on the trimap. The classifier uses a decision tree with a large range of features, including HOG and color.

1 Introduction

• CVPR 2005
• 18,761 citations
Person detection with HoG’s & linear SVM’s

- Map each grid cell in the input window to a histogram counting the gradients per orientation.
- Train a linear SVM using training set of pedestrian vs. non-pedestrian windows.

Code available: http://pascal.inrialpes.fr/soft/olt/

Dalal & Triggs, CVPR 2005

Dalal & Triggs, CVPR 2005

Person detection with HoG’s & linear SVM’s

Histograms of Oriented Gradients for Human Detection, Navneet Dalal, Bill Triggs, International Conference on Computer Vision & Pattern Recognition - June 2005
http://lear.inrialpes.fr/pubs/2005/DT05/
Questions

- What if the features are not 2d?
- What if the data is not linearly separable?
- What if we have more than just two categories?

Non-linear SVMs

- Datasets that are linearly separable with some noise work out great:
- But what are we going to do if the dataset is just too hard?
- How about… mapping data to a higher-dimensional space:

Non-linear SVMs: feature spaces

- General idea: the original input space can be mapped to some higher-dimensional feature space where the training set is separable:

Slide from Andrew Moore’s tutorial: http://www.autonlab.org/tutorialsvm.html
The “Kernel Trick”
- The linear classifier relies on dot product between vectors $K(x_i, x_j) = x_i^T x_j$
- If every data point is mapped into high-dimensional space via some transformation Φ: $x \rightarrow \varphi(x)$, the dot product becomes:
 $$K(x_i, x_j) = \varphi(x_i)^T \varphi(x_j)$$
- A kernel function is similarity function that corresponds to an inner product in some expanded feature space.

Finding the maximum margin line
- Solution:
 $w = \sum i \alpha_i y_i x_i$
 $b = y_j - w \cdot x_j$ (for any support vector)
 $w \cdot x + b = \sum i \alpha_i y_i x_i \cdot x + b$
Example

2-dimensional vectors \(x = [x_1 \ x_2]; \)

let \(K(x_i, x_j) = (1 + x_i^T x_j)^2 \)

Need to show that \(K(x_i, x_j) = \varphi(x_i)^T \varphi(x_j): \)

\[
K(x_i, x_j) = (1 + x_i^T x_j)^2,
\]

\[
= 1 + x_1^2 x_2^2 + 2 x_1 x_2 x_1 x_2 + x_2^2 x_2^2 + 2 x_1 x_1 + 2 x_2 x_2
\]

\[
= [1 \ x_1^2 \ \sqrt{2} x_1 x_2 \ x_2^2 \ \sqrt{2} x_1 \ \sqrt{2} x_2] \varphi(x_i) \varphi(x_j)
\]

where \(\varphi(x) = [1 \ x_1^2 \ \sqrt{2} x_1 x_2 \ x_2^2 \ \sqrt{2} x_1 \ \sqrt{2} x_2] \)

from Andrew Moore's tutorial: http://www.autonlab.org/tutorials/svm.html

Nonlinear SVMs

- The kernel trick: instead of explicitly computing the lifting transformation \(\varphi(x) \), define a kernel function \(K \) such that

\[
K(x_i, x_j) = \varphi(x_i)^T \varphi(x_j)
\]

Finding the maximum margin line

- Solution: \(w = \sum \alpha_i y_i x_i \)

\[
b = y_i - w \cdot x_i \quad \text{(for any support vector)}
\]

\[
w \cdot x + b = \sum \alpha_i y_i x_i \cdot x + b
\]
Nonlinear SVMs

- The kernel trick: instead of explicitly computing the lifting transformation \(\phi(x) \), define a kernel function \(K \) such that
 \[
 K(x_i, x_j) = \phi(x_i) \cdot \phi(x_j)
 \]

- This gives a nonlinear decision boundary in the original feature space:
 \[
 \sum \alpha_i y_i K(x_i, x) + b
 \]

Examples of kernel functions

- Linear:
 \[
 K(x_i, x_j) = x_i^T x_j
 \]

- Gaussian RBF:
 \[
 K(x_i, x_j) = \exp\left(-\frac{||x_i - x_j||^2}{2\sigma^2} \right)
 \]

- Histogram intersection:
 \[
 K(x_i, x_j) = \sum_k \min(x_i(k), x_j(k))
 \]

SVMs for recognition

1. Define your representation for each example.
2. Select a kernel function.
3. Compute pairwise kernel values between labeled examples (i.e., training data).
4. Use this “kernel matrix” to solve for SVM support vectors & weights.
5. To classify a new test example: compute kernel values between new input and support vectors, apply weights, check sign of output.
Example: learning gender with SVMs

Moghaddam and Yang, Learning Gender with Support Faces, TPAMI 2002.
Moghaddam and Yang, Face & Gesture 2000.

Face alignment processing

Multiscale Head Search
Scale
Feature Search
Warp
Mask
Processed faces

Learning gender with SVMs

- Training examples:
 - 1044 males
 - 713 females
- Experiment with various kernels, select Gaussian RBF

\[K(x_i, x_j) = \exp(-\frac{|x_i - x_j|^2}{2\sigma^2}) \]
Support Faces

Gender perception experiment: How well can humans do?

- Subjects:
 - 30 people (22 male, 8 female)
 - Ages mid-20’s to mid-40’s

- Test data:
 - 254 face images
 - Low res (6 males, 4 females)
 - High res versions

- Task:
 - Classify as male or female, forced choice
 - No time limit
Gender perception experiment:
How well can humans do?

Stimuli
- Stimuli 1: 64 x 48, N = 402
- Stimuli 2: 25 x 35, N = 252

Results
- **High-Res**
 - Error: 6.54%
- **Low-Res**
 - Error: 30.7%

Human vs. Machine

- SVMs performed better than any single human test subject, at either resolution

![Figure 6: SVM vs. Human performance](image)

Hardest examples for humans

Top five human misclassifications

Moghaddam and Yang, Face & Gesture 2000.
Questions

- What if the features are not 2d?
- What if the data is not linearly separable?
- What if we have more than just two categories?

Multi-class SVMs

- Achieve multi-class classifier by combining a number of binary classifiers
- **One vs. all**
 - Training: learn an SVM for each class vs. the rest
 - Testing: apply each SVM to test example and assign to it the class of the SVM that returns the highest decision value
- **One vs. one**
 - Training: learn an SVM for each pair of classes
 - Testing: each learned SVM “votes” for a class to assign to the test example

SVMs: Pros and cons

- **Pros**
 - Many publicly available SVM packages:
 http://www.kernel-machines.org/software
 http://www.csie.ntu.edu.tw/~cjlin/libsvm/
 - Kernel-based framework is very powerful, flexible
 - Often a sparse set of support vectors – compact at test time
 - Work very well in practice, even with very small training sample sizes
- **Cons**
 - No “direct” multi-class SVM, must combine two-class SVMs
 - Can be tricky to select best kernel function for a problem
 - Computation, memory
 - During training time, must compute matrix of kernel values for every pair of examples
 - Learning can take a very long time for large-scale problems
Questions?

See you Tuesday!