Previously

• Intro to generic object recognition
• Supervised classification
 – Main idea
 – Skin color detection example

Last time:
Example: skin color classification
• We can represent a class-conditional density using a histogram (a “non-parametric” distribution)
Last time:
Example: skin color classification
- We can represent a class-conditional density using a histogram (a “non-parametric” distribution)

Now we get a new image, and want to label each pixel as skin or non-skin.

\[P(skin \mid x) \propto P(x \mid skin)P(skin) \]

Today
- Window-based generic object detection
 - basic pipeline
 - boosting classifiers
 - face detection as case study
Generic category recognition: basic framework

- Build/train object model
 - Choose a representation
 - Learn or fit parameters of model / classifier
- Generate candidates in new image
- Score the candidates

Window-based models
Building an object model

Given the representation, train a binary classifier

Given the representation, train a binary classifier

Window-based models
Generating and scoring candidates
Window-based object detection: recap

Training:
1. Obtain training data
2. Define features
3. Define classifier

Given new image:
1. Slide window
2. Score by classifier

Discriminative classifier construction

Nearest neighbor
Shakhnarovich, Viola, Darrell 2003
Borg, Berg, Malik 2005

Support Vector Machines
Guyon, Vapnik
Heisele, Sim, Poggio, 2001...

Boosting
Viola, Jones 2001
Torrabha et al. 2004
Opelt et al. 2006...

Neural networks
LeCun, Bottou, Bengio, Haffner 1998
Rowley, Baluja, Kanade 1998

Support Vector Machines
Guyon, Vapnik
Heisele, Sim, Poggio, 2001...

Boosting
Viola, Jones 2001
Torrabha et al. 2004
Opelt et al. 2006...

Conditional Random Fields
McCallum, Freitag, Pereira 2000; Kumar, Hebert 2003
...
Boosting intuition

Weak Classifier 1

Weights Increased

Boosting illustration

Weak Classifier 2
Boosting illustration

Weights Increased

Boosting illustration

Weak Classifier 3

Boosting illustration

Final classifier is a combination of weak classifiers
Boosting: training

- Initially, weight each training example equally
- In each boosting round:
 - Find the weak learner that achieves the lowest weighted training error
 - Raise weights of training examples misclassified by current weak learner
- Compute final classifier as linear combination of all weak learners (weight of each learner is directly proportional to its accuracy)
- Exact formulas for re-weighting and combining weak learners depend on the particular boosting scheme (e.g., AdaBoost)

Viola-Jones face detector

Rapid Object Detection using a Boosted Cascade of Simple Features

Paul Viola
viola@mit.edu
Massachusetts Institute of Technology
77 Massachusetts Avenue
Cambridge, MA 02139

Michael Jones
mjones@ee.stanford.edu
Stanford University
Stanford, CA 94305

Abstract
This paper describes a machine learning approach for vehicle detection.
Viola-Jones detector: features

"Rectangular" filters
Feature output is difference between adjacent regions

Efficiently computable with integral image: any sum can be computed in constant time.

Value at (x,y) is sum of pixels above and to the left of (x,y)

Integral image

Kristen Grauman

Computing the integral image

Computing the integral image

• Cumulative row sum: \(s(x, y) = s(x-1, y) + i(x, y) \)
• Integral image: \(ii(x, y) = ii(x, y-1) + s(x, y) \)
Computing sum within a rectangle

- Let A, B, C, D be the values of the integral image at the corners of a rectangle.
- Then the sum of original image values within the rectangle can be computed as:
 \[\text{sum} = A - B - C + D \]
- Only 3 additions are required for any size of rectangle!

Viola-Jones detector: features

"Rectangular" filters

Feature output is difference between adjacent regions

Efficiently computable with integral image: any sum can be computed in constant time

Considering all possible filter parameters: position, scale, and type:

180,000+ possible features associated with each 24 x 24 window

Which subset of these features should we use to determine if a window has a face?

Use AdaBoost both to select the informative features and to form the classifier.
Viola-Jones detector: AdaBoost

- Want to select the single rectangle feature and threshold that best separates positive (faces) and negative (non-faces) training examples, in terms of weighted error.

Resulting weak classifier:

\[h(x) = \begin{cases} 1 & \text{if } f_i(x) > \theta_i \\ -1 & \text{otherwise} \end{cases} \]

For next round, reweight the examples according to errors, choose another filter/threshold combo.

AdaBoost Algorithm

1. Start with uniform weights on training examples.
2. For \(T \) rounds:
 - Evaluate weighted error for each feature, pick best.
 - Re-weight the examples:
 * Incorrectly classified \(\Rightarrow \) more weight
 * Correctly classified \(\Rightarrow \) less weight
3. Final classifier is combination of the \(T \) weak ones, weighted according to error they had.

Freund & Schapire 1995

Viola-Jones Face Detector: Results

First two features selected
• Even if the filters are fast to compute, each new image has a lot of possible windows to search.

• How to make the detection more efficient?

Cascading classifiers for detection

• Form a cascade with low false negative (high recall) rates early on

• Apply less accurate but faster classifiers first to immediately discard windows that clearly appear to be negative

Viola-Jones detector: summary

Train with 5K positives, 350M negatives
Real-time detector using 38 layer cascade
6061 features in all layers

[Implementation available in OpenCV: http://www.intel.com/technology/computing/opencv/]

Kristen Grauman
Viola-Jones detector: summary

- A seminal approach to real-time object detection
- Training is slow, but detection is very fast
- Key ideas
 - Integral images for fast feature evaluation
 - Boosting for feature selection
 - Attentional cascade of classifiers for fast rejection of non-face windows

Viola-Jones Face Detector: Results

Viola-Jones Face Detector: Results
Viola-Jones Face Detector: Results

Detecting profile faces?

Can we use the same detector?

Viola-Jones Face Detector: Results
Everingham, M., Sivic, J. and Zisserman, A.
“Hello! My name is... Buffy” - Automatic naming of characters in TV video, BMVC 2006. http://www.robots.ox.ac.uk/~vgg/research/face/index.html

Example using Viola-Jones detector

Frontal faces detected and then tracked, character names inferred with alignment of script and subtitles.

Google now reserves faces, license plates on Map Street View

Google has automated objects from scenes, activated the structure of faces and license plates一张照片，将它们展示在浏览器上。Google表示，乘客们在该公司的车辆上可以使用这些技术，乘客们可以使用这些技术来识别车辆的特征。

Google街景视图模糊了牛的脸以保护其身份

图中显示了一头牛在被模糊的景象中。
http://www.apple.com/ilife/iphoto/

Things iPhoto thinks are faces

Can be trained to recognize pets!

Privacy Gift Shop – CV Dazzle

http://www.wired.com/2015/06/facebook-can-recognize-even-dont-show-face/
Wired, June 15, 2015
Slide: Kristen Grauman

Privacy Visor

Slide: Kristen Grauman

Boosting: pros and cons

• Advantages of boosting
 • Integrates classification with feature selection
 • Flexibility in the choice of weak learners, boosting scheme
 • Testing is fast
 • Easy to implement

• Disadvantages
 • Needs many training examples
 • Often found not to work as well as an alternative
discriminative classifier, support vector machine (SVM)
 – especially for many-class problems
What other categories are amenable to window-based representation?

Pedestrian detection
- Detecting upright, walking humans also possible using sliding window’s appearance/texture; e.g.,
 - SVM with Haar wavelets [Papageorgiou & Poggio, IJCV 2000]
 - Space-time rectangle features [Viola, Jones & Snow, ICCV 2003]
 - SVM with HoGs [Dalal & Triggs, CVPR 2005]

Window-based detection: strengths
- Sliding window detection and global appearance descriptors:
 - Simple detection protocol to implement
 - Good feature choices critical
 - Past successes for certain classes
Window-based detection: Limitations

- High computational complexity
 - For example: 250,000 locations x 30 orientations x 4 scales = 30,000,000 evaluations!
 - If training binary detectors independently, means cost increases linearly with number of classes
- With so many windows, false positive rate better be low

Limitations (continued)

- Not all objects are “box” shaped
Limitations (continued)

- In practice, often entails large, cropped training set (expensive)
- Requiring good match to a global appearance description can lead to sensitivity to partial occlusions

Summary

- Basic pipeline for window-based detection
 - Model/representation/classifier choice
 - Sliding window and classifier scoring
- Boosting classifiers: general idea
- Viola-Jones face detector
 - Exemplar of basic paradigm
 - Plus key ideas: rectangular features, Adaboost for feature selection, cascade
- Pros and cons of window-based detection

Questions?

See you Thursday!