Announcements

- PS3 out tonight; due 6/7, 11:59 pm

Outline

- **Last time:** window-based generic object detection
 - basic pipeline
 - face detection with boosting as case study
Window-based models
Building an object model

Given the representation, train a binary classifier

Yes, car.
No, not a car.

Window-based models
Generating and scoring candidates

Window-based object detection: recap

Training:
1. Obtain training data
2. Define features
3. Define classifier

Given new image:
1. Slide window
2. Score by classifier
Viola-Jones detector: summary

- A seminal approach to real-time object detection
- Training is slow, but detection is very fast
- Key ideas
 - *Integral images* for fast feature evaluation
 - *Boosting* for feature selection
 - *Attentional cascade* of classifiers for fast rejection of non-face windows

Boosting intuition

Weak Classifier 1

Boosting illustration

Weights Increased

Weak Classifier 2
Weights Increased

Weak Classifier 3

Final classifier is a combination of weak classifiers
Discriminative classifier construction

- Nearest neighbor
 - Shihtzarovich, Viola, Darrell 2003
 - Berg, Berg, Malik 2005

- Neural networks
 - LeCun, Bottou, Bengio, Haffner 1998
 - Rowley, Baluja, Kanade 1998

- Support Vector Machines
 - Guyon, Vapnik, Heisele, Same, Poggio, 2001

- Boosting
 - Viola, Jones 2001
 - Torralba et al. 2004
 - Opel et al. 2006

- Conditional Random Fields
 - McCallum, Freitag, Pereira 2000
 - Kumar, Hebert 2003

Nearest Neighbor classification

- Assign label of nearest training data point to each test data point

- Black = negative
- Red = positive

Voronoi partitioning of feature space for 2-category 2D data
K-Nearest Neighbors classification

- For a new point, find the k closest points from training data
- Labels of the k points "vote" to classify

[Diagram showing K-Nearest Neighbors with points and k=5]

If query lands here, the 5 NN consist of 3 negatives and 2 positives, so we classify it as negative.

A nearest neighbor recognition example

Where in the World?

[Image: Notre Dame Cathedral]

Where in the World?

6+ million geotagged photos by 109,788 photographers

Annotated by Flickr users
6+ million geotagged photos by 109,788 photographers

Annotated by Flickr users

Quantitative Evaluation Test Set

Which scene properties are relevant?
A scene is a single surface that can be represented by global (statistical) descriptors.

Global texture: capturing the “Gist” of the scene

Capture global image properties while keeping some spatial information.

Gist scene descriptor

Color Histograms - L*A*B* 4x14x14 histograms

Texton Histograms - 512 entry, filter bank based

Line Features - Histograms of straight line stats
Im2GPS: Scene Matches

Slides: James Hays
The Importance of Data

![Graph showing the importance of data](image_url)

Slides: James Hays

Nearest neighbors: pros and cons

- **Pros:**
 - Simple to implement
 - Flexible to feature / distance choices
 - Naturally handles multi-class cases
 - Can do well in practice with enough representative data

- **Cons:**
 - Large search problem to find nearest neighbors (slow during testing)
 - Storage of data
 - Must have a meaningful distance function

Outline

- Discriminative classifiers
 - Boosting (last time)
 - Nearest neighbors
 - Support vector machines
Linear classifiers

Lines in \mathbb{R}^2

Let $w = \begin{bmatrix} a \\ c \end{bmatrix}$, $x = \begin{bmatrix} x \\ y \end{bmatrix}$

$$ax + cy + b = 0$$

Lines in \mathbb{R}^2

Let $w = \begin{bmatrix} a \\ c \end{bmatrix}$, $x = \begin{bmatrix} x \\ y \end{bmatrix}$

$$ax + cy + b = 0$$

$$w \cdot x + b = 0$$
Lines in \mathbb{R}^2

Let \(w = \begin{bmatrix} a \\ c \end{bmatrix} \) \(x = \begin{bmatrix} x \\ y \end{bmatrix} \)

\[ax + cy + b = 0 \]

\[w \cdot x + b = 0 \]

\[D = \frac{|ax_0 + cy_0 + b|}{\sqrt{a^2 + c^2}} \]

distance from point to line

43

44

45
Linear classifiers

- Find linear function to separate positive and negative examples

\[x_{\text{positive}} : x \cdot w + b \geq 0 \]
\[x_{\text{negative}} : x \cdot w + b < 0 \]

Which line is best?

Support Vector Machines (SVMs)

- Discriminative classifier based on optimal separating line (for 2d case)
- Maximize the margin between the positive and negative training examples

Support vector machines

- Want line that maximizes the margin.

For support vectors, \[x \cdot w + b = \pm 1 \]

Support vector machines

• Want line that maximizes the margin.

\[x, \text{ positive } (y_i = 1): \quad x_i \cdot w + b \geq 1 \]

\[x, \text{ negative } (y_i = -1): \quad x_i \cdot w + b \leq -1 \]

For support vectors, \(x_i \cdot w + b \pm 1 \)

Distance between point and line:
\[\frac{|x_i \cdot w + b|}{||w||} \]

For support vectors:
\[w \cdot x + b = \pm 1 \]

Support vectors

Margin \(M \)

\[M = \frac{2}{||w||} \]

Therefore, the margin is \(2 / ||w|| \)

Finding the maximum margin line

1. Maximize margin \(2 / ||w|| \)

2. Correctly classify all training data points:

\[x, \text{ positive } (y_i = 1): \quad x_i \cdot w + b \geq 1 \]

\[x, \text{ negative } (y_i = -1): \quad x_i \cdot w + b \leq -1 \]

Quadratic optimization problem:

\[
\text{Minimize} \quad \frac{1}{2} w^T w \\
\text{Subject to} \quad y_i(w \cdot x_i + b) \geq 1
\]
Finding the maximum margin line

- Solution: \(w = \sum \alpha_i y_i x_i \)

Finding the maximum margin line

- Solution: \(b = y_j - w \cdot x_j \) (for any support vector)
- \(w \cdot x + b = \sum \alpha_i y_i x_i \cdot x + b \)
- Classification function:
 \[
 f(x) = \text{sign} (w \cdot x + b) \]
 If \(f(x) < 0 \), classify as negative,
 if \(f(x) > 0 \), classify as positive

Questions

- What if the features are not 2d?
- What if the data is not linearly separable?
- What if we have more than just two categories?
Questions

• What if the features are not 2D?
 – Generalizes to d-dimensions – replace line with “hyperplane”

• What if the data is not linearly separable?
• What if we have more than just two categories?

Histograms of Oriented Gradients for Human Detection

Narayan Dalal and Bill Triggs
INRIA Rhône-Alpes, 205 avenue de l’Europe, Montbonnot 69624, France

Abstract
We study the question of feature and for object oriented
detection, adopting (like) SVM based human detection
methods. After briefly describing how the standard
features are calculated, we show experimentally that all
of descriptors of oriented gradient (HOG) descriptors (like
extracted from the standard features are bad for human
detection. We show the importance of each stage of the computer
vision pipeline: training, model selection, training
hyper-parameters, model combination, and model
location/junction detection. The results show that
the combination of HOGs and linear SVM is the
most effective system to achieve an accuracy of above
85% on a human detection dataset consisting of 1936
unary human images and 1198 pedestrian images.

1 Introduction

• CVPR 2005
• 22877 citations

Person detection
with HoG’s & linear SVM’s

• Map each grid cell in the
 input window to a histogram
counting the gradients per
orientation.

• Train a linear SVM using
 training set of pedestrian vs.
 non-pedestrian windows.

Dalal & Triggs, CVPR 2005
Person detection with HoG’s & linear SVM’s

• Histograms of Oriented Gradients for Human Detection, Navneet Dalal, Bill Triggs, International Conference on Computer Vision & Pattern Recognition - June 2005

Questions

• What if the features are not 2d?
• What if the data is not linearly separable?
• What if we have more than just two categories?

Non-linear SVMs

• Datasets that are linearly separable with some noise work out great:

• But what are we going to do if the dataset is just too hard?

• How about… mapping data to a higher-dimensional space:
Non-linear SVMs: feature spaces

- General idea: the original input space can be mapped to some higher-dimensional feature space where the training set is linearly separable:

The “Kernel Trick”

- The linear classifier relies on dot product between vectors $K(x_i, x_j) = x_i^T x_j$

Finding the maximum margin line

- Solution: $w = \sum \alpha_i y_i x_i$

 $b = y_j - w \cdot x_j$ (for any support vector)

 $w \cdot x + b = \sum \alpha_i y_i x_i \cdot x + b$
The “Kernel Trick”

- The linear classifier relies on dot product between vectors $K(x_i, x_j) = x_i^T x_j$
- If every data point is mapped into high-dimensional space via some transformation $\Phi: x \rightarrow \phi(x)$, the dot product becomes:
$$K(x_i, x_j) = \phi(x_i)^T \phi(x_j)$$
- A kernel function is a similarity function that corresponds to an inner product in some expanded feature space.

Example

2-dimensional vectors $x = [x_1, x_2]$;

Let $K(x_i, x_j) = (1 + x_i^T x_j)^2$

Need to show that $K(x_i, x_j) = \phi(x_i)^T \phi(x_j)$:

$$K(x_i, x_j) = (1 + x_i^T x_j)^2$$
$$= 1 + x_i^2 + 2 x_i x_j + x_j^2$$

$$= [1, x_i^2, \sqrt{2} x_i x_j, x_j^2]^T$$

$$= \phi(x_i)^T \phi(x_j)$$

where $\phi(x) = [1, x_1^2, \sqrt{2} x_1 x_2, x_2^2]^T$

Nonlinear SVMs

- The kernel trick: instead of explicitly computing the lifting transformation $\phi(x)$, define a kernel function K such that
$$K(x_i, x_j) = \phi(x_i)^T \phi(x_j)$$
Finding the maximum margin line

- Solution: \(w = \sum \alpha_i y_i x_i \)

 \[b = y_i - w \cdot x_i \quad \text{(for any support vector)} \]

\[w \cdot x + b = \sum \alpha_i y_i x_i \cdot x + b \]

Nonlinear SVMs

- The kernel trick: instead of explicitly computing the lifting transformation \(\phi(x) \), define a kernel function \(K \) such that

 \[K(x_i, x_j) = \phi(x_i) \cdot \phi(x_j) \]

- This gives a nonlinear decision boundary in the original feature space:

 \[\sum \alpha_i y_i K(x_i, x) + b \]

Examples of kernel functions

- Linear: \(K(x_i, x_j) = x_i^T x_j \)

- Gaussian RBF: \(K(x_i, x_j) = \exp\left(-\frac{||x_i - x_j||^2}{2\sigma^2}\right) \)

- Histogram intersection:

 \[K(x_i, x_j) = \sum_k \min(x_i(k), x_j(k)) \]
SVMs for recognition

1. Define your representation for each example.
2. Select a kernel function.
3. Compute pairwise kernel values between labeled examples (i.e., training data).
4. Use this “kernel matrix” to solve for SVM support vectors & weights.
5. To classify a new test example: compute kernel values between new input and support vectors, apply weights, check sign of output.

Example: learning gender with SVMs

Moghaddam and Yang, Learning Gender with Support Faces, TPAMI 2002.
Moghaddam and Yang, Face & Gesture 2000.
Learning gender with SVMs

- Training examples:
 - 1044 males
 - 713 females
- Experiment with various kernels, select Gaussian RBF
 \[K(x_i, x_j) = \exp\left(-\frac{|x_i - x_j|^2}{2\sigma^2}\right) \]

Support Faces

Classifier Performance

<table>
<thead>
<tr>
<th>Classifier</th>
<th>Error Rate</th>
<th>Overall</th>
<th>Male</th>
<th>Female</th>
</tr>
</thead>
<tbody>
<tr>
<td>SVM with RBF kernel</td>
<td>3.38%</td>
<td>2.65%</td>
<td>4.79%</td>
<td></td>
</tr>
<tr>
<td>SVM with cubic polynomial kernel</td>
<td>4.88%</td>
<td>4.21%</td>
<td>5.59%</td>
<td></td>
</tr>
<tr>
<td>Large ensemble of RBF</td>
<td>5.54%</td>
<td>4.59%</td>
<td>6.55%</td>
<td></td>
</tr>
<tr>
<td>Classical RBF</td>
<td>7.79%</td>
<td>6.89%</td>
<td>8.75%</td>
<td></td>
</tr>
<tr>
<td>Quadratic classifier</td>
<td>10.6%</td>
<td>9.44%</td>
<td>11.88%</td>
<td></td>
</tr>
<tr>
<td>Fisher linear discriminant</td>
<td>13.0%</td>
<td>12.31%</td>
<td>13.78%</td>
<td></td>
</tr>
<tr>
<td>Nearest neighbor</td>
<td>27.16%</td>
<td>26.53%</td>
<td>28.04%</td>
<td></td>
</tr>
<tr>
<td>Linear classifier</td>
<td>58.95%</td>
<td>58.47%</td>
<td>59.45%</td>
<td></td>
</tr>
</tbody>
</table>

Gender perception experiment: How well can humans do?

- Subjects:
 - 30 people (22 male, 8 female)
 - Ages mid-20’s to mid-40’s
- Test data:
 - 254 face images
 - Low res
 - High res
- Task:
 - Classify as male or female, forced choice
 - No time limit

Moghaddam and Yang, Face & Gesture 2000.

Human vs. Machine

- SVMs performed better than any single human test subject, at either resolution
Hardest examples for humans

Top five human misclassifications

True classification:

Moghaddam and Yang, Face & Gesture 2000.

Questions

• What if the features are not 2d?
• What if the data is not linearly separable?
• What if we have more than just two categories?

Multi-class SVMs

• Achieve multi-class classifier by combining a number of binary classifiers
 • One vs. all
 – Training: learn an SVM for each class vs. the rest
 – Testing: apply each SVM to test example and assign to it the class of the SVM that returns the highest decision value
 • One vs. one
 – Training: learn an SVM for each pair of classes
 – Testing: each learned SVM “votes” for a class to assign to the test example
SVMs: Pros and cons

Pros
- Many publicly available SVM packages:
 - http://www.kernel-machines.org/software
 - http://www.csie.ntu.edu.tw/~cjlin/libsvm/
- Kernel-based framework is powerful, flexible
- Often a sparse set of support vectors – compact at test time
- Work very well in practice, even with very small training sample sizes

Cons
- Can be tricky to select best kernel function for a problem
- Computation, memory
 - During training time, must compute matrix of kernel values for every pair of examples
 - Learning can take a very long time for large-scale problems