Previously

• Filters allow local image neighborhood to influence our description and features
  – Smoothing to reduce noise
  – Derivatives to locate contrast, gradient

• Seam carving application:
  – use image gradients to measure “interestingness” or “energy”
  – remove 8-connected seams so as to preserve image’s energy

Review: Partial derivatives of an image

\[
\frac{\partial f(x, y)}{\partial x}, \quad \frac{\partial f(x, y)}{\partial y}
\]

Which shows changes with respect to x?

(-1 1) or (1 -1)
Today

- Edge detection and matching
  - process the image gradient to find curves/contours
  - comparing contours
- Binary image analysis
  - blobs and regions
Edge detection

- **Goal:** map image from 2d array of pixels to a set of curves or line segments or contours.
- **Why?**

  - **Main idea:** look for strong gradients, post-process

Gradients -> edges

Primary edge detection steps:
1. Smoothing: suppress noise
2. Edge enhancement: filter for contrast
3. Edge localization
   Determine which local maxima from filter output are actually edges vs. noise
   - Threshold, Thin

Thresholding

- Choose a threshold value $t$
- Set any pixels less than $t$ to zero (off)
- Set any pixels greater than or equal to $t$ to one (on)
Thresholding gradient with a higher threshold

Canny edge detector
- Filter image with derivative of Gaussian
- Find magnitude and orientation of gradient
- Non-maximum suppression:
  - Thin wide "ridges" down to single pixel width
- Linking and thresholding (hysteresis):
  - Define two thresholds: low and high
  - Use the high threshold to start edge curves and the low threshold to continue them
- MATLAB: `edge(image, 'canny');`
- `>>help edge`

The Canny edge detector
original image (Lena)
The Canny edge detector

thresholding

How to turn these thick regions of the gradient into curves?

Non-maximum suppression

Check if pixel is local maximum along gradient direction
Select single max across width of the edge
Requires checking interpolated pixels p and r
The Canny edge detector

Problem:

pixels along this edge didn’t survive the thresholding

(non-maximum suppression)

Hysteresis thresholding

• Use a high threshold to start edge curves, and a low threshold to continue them.

Hysteresis thresholding

original image

high threshold (strong edges)

low threshold (weak edges)

hysteresis threshold
Hysteresis thresholding

http://users.ecs.soton.ac.uk/msn/book/new_demo/thresholding/

Recap: Canny edge detector

- Filter image with derivative of Gaussian
- Find magnitude and orientation of gradient
- **Non-maximum suppression:**
  - Thin wide "ridges" down to single pixel width
- **Linking and thresholding (hysteresis):**
  - Define two thresholds: low and high
  - Use the high threshold to start edge curves and the low threshold to continue them

- MATLAB: `edge(image, 'canny');`
- `>>help edge`

Low-level edges vs. perceived contours

Slide credit: David Lowe, Fei-Fei Li
Low-level edges vs. perceived contours

- Berkeley segmentation database:
  http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/

Learn from humans which combination of features is most indicative of a "good" contour?

[D. Martin et al. PAMI 2004]

Human-marked segment boundaries

pB boundary detector

Martin, Fowlkes, Malik 2004: Learning to Detection Natural Boundaries...

Figure from Fowlkes
pB Boundary Detector

Figure from Fowlkes

State-of-the-Art in Contour Detection

Holistically-Nested Edge Detection (Xie, Tu ICCV 2015)

1. holistic image training and prediction
2. multi-scale and multi-level feature learning
3. Deeply-supervised fully-convolutional network

State-of-the-Art in Contour Detection

Today

- Edge detection and matching
  - process the image gradient to find curves/contours
  - comparing contours
- Binary image analysis
  - blobs and regions
Chamfer distance

- Average distance to nearest feature/edge

\[ D_{\text{chamfer}}(I, I) = \frac{1}{|T|} \sum_{t \in T} d_I(t) \]

- \( I \) = Set of edge points in image
- \( T \) = Set of edge points on (shifted) template
- \( d_I(t) \) = Minimum distance between point \( t \) and some point in \( I \)
**Chamfer distance**

- Average distance to nearest feature

\[ D_{\text{chamfer}}(T,I) \equiv \frac{1}{|T|} \sum_{f \in T} d_f(t) \]

How is the measure different than just filtering with a mask having the shape points?

How expensive is a naïve implementation?

---

**Distance transform**

- **Distance Transform** is a function \( D() \) that for each image pixel \( p \) assigns a non-negative number \( D(p) \) corresponding to distance from \( p \) to the nearest feature in the image \( I \)

**Image features (2D)**

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Value at \((x,y)\) tells how far that position is from the nearest edge point (or other binary image structure)

>> help bwdist

---

**Distance transform**

original  edges  distance transform

Value at \((x,y)\) tells how far that position is from the nearest edge point (or other binary image structure)

>> help bwdist
Distance transform (1D)

Two pass $O(n)$ algorithm for 1D L1 norm

1. Initialize: For all $j$
   
   \[ D[j] \leftarrow 1 \] if $j$ is in $P$, infinity otherwise

Distance transform

Image features (edges)

0 1 0 0 5 0 0

Distance transform

Distance Transform (2D)

- 2D case analogous to 1D
  - Initialization
  - Forward and backward pass
    - Fwd pass finds closest above and to left
    - Bwd pass finds closest below and to right

Chamfer distance

- Average distance to nearest feature

\[ D_{cham}(T, I) \equiv \frac{1}{|T|} \sum_{t \in T} d_I(t) \]

Edge image  Distance transform image
Chamfer distance

Fig from D. Gavrila, DAGM 1999

Chamfer distance: properties
- Sensitive to scale and rotation
- Tolerant of small shape changes, clutter
- Need large number of template shapes
- Inexpensive way to match shapes

Today
- Edge detection and matching
  - process the image gradient to find curves/contours
  - comparing contours
- Binary image analysis
  - blobs and regions
Binary images

Binary image analysis: basic steps
- Convert the image into binary form
  - Thresholding
- Clean up the thresholded image
  - Morphological operators
- Extract separate blobs
  - Connected components
- Describe the blobs with region properties

Binary images
- Two pixel values
  - Foreground and background
  - Mark region(s) of interest
Thresholding

- Grayscale $\rightarrow$ binary mask
- Useful if object of interest's intensity distribution is distinct from background

$$F[i,j] = \begin{cases} 1 & \text{if } F[i,j] \geq T_1 \\ 0 & \text{otherwise.} \end{cases}$$

$$F[i,j] = \begin{cases} 1 & \text{if } T_1 \leq F[i,j] \leq T_2 \\ 0 & \text{otherwise.} \end{cases}$$

$$F[i,j] = \begin{cases} 1 & \text{if } F[i,j] \in Z \\ 0 & \text{otherwise.} \end{cases}$$

- Example
  
  [Link to example](http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/FITZGIBBON/simplebinary.html)

---

Thresholding

- Given a grayscale image or an intermediate matrix $\rightarrow$ threshold to create a binary output.

**Example:** edge detection

Looking for pixels where gradient is strong.

---

Thresholding

- Given a grayscale image or an intermediate matrix $\rightarrow$ threshold to create a binary output.

**Example:** background subtraction

Looking for pixels that differ significantly from the "empty" background.

---
Thresholding

• Given a grayscale image or an intermediate matrix $\rightarrow$ threshold to create a binary output.

Example: intensity-based detection

Looking for dark pixels

Example: color-based detection

Looking for pixels within a certain hue range.

A nice case: bimodal intensity histograms

Not so nice cases

Issues

• What to do with “noisy” binary outputs?
  – Holes
  – Extra small fragments

• How to demarcate multiple regions of interest?
  – Count objects
  – Compute further features per object

Morphological operators

• Change the shape of the foreground regions via intersection/union operations between a scanning structuring element and binary image

• Useful to clean up result from thresholding

• Basic operators are:
  – Dilation
  – Erosion
### Dilation
- Expands connected components
- Grow features
- Fill holes

Before dilation

After dilation

### Erosion
- Erode connected components
- Shrink features
- Remove bridges, branches, noise

Before erosion

After erosion

### Structuring elements
- **Masks** of varying shapes and sizes used to perform morphology, for example:

```
>> help strel
```
Dilation vs. Erosion

At each position:

- **Dilation**: if current pixel is 1, then set all the output pixels corresponding to structuring element to 1.

Example for Dilation

<table>
<thead>
<tr>
<th>Input image</th>
<th>Structuring Element</th>
<th>Output Image</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 0 0 0 1 1 0 1 1</td>
<td>1 1</td>
<td>1 1</td>
</tr>
</tbody>
</table>

Slide credit: Adapted by Kristen Grauman from T. Moeslund

Example for Dilation

<table>
<thead>
<tr>
<th>Input image</th>
<th>Structuring Element</th>
<th>Output Image</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 0 0 0 1 1 0 1 1</td>
<td>1 1 1</td>
<td>1 1</td>
</tr>
</tbody>
</table>
Example for Dilation

Input image

1 1 1 1 1 1

Structuring Element

1 1 1

Output Image

1 1 1 1 1 1

Example for Dilation

Input image

1 0 0 0 1 1 1 1 1

Structuring Element

1 1 1

Output Image

1 1 0 0 1 1 1 1 1

Example for Dilation

Input image

1 0 0 0 1 1 1 1 1

Structuring Element

1 1 1

Output Image

1 1 0 1 1 1 1 1 1

Slide credit: Kristen Grauman
Example for Dilation

Input image: 1 0 0 1 1 0 1 1
Structuring Element: 1 1 1
Output Image: 1 1 0 1 1 1 1 1

Example for Dilation

Input image: 1 0 0 1 1 0 1 1
Structuring Element: 1 1 1 1
Output Image: 1 1 0 1 1 1

Example for Dilation

Input image: 1 0 0 1 1 0 1 1
Structuring Element: 1 1 1
Output Image: 1 1 0 1 1 1 1

Slide credit: Kristen Grauman
Example for Dilation

Input image:

```
1 0 0 1 1 0 1 1
```

Structuring Element:

```
1 1 1
```

Output Image:

```
1 1 0 1 1 1 1 1
```

Note that the object gets bigger and holes are filled.

>> help imdilate

Slide credit: Kristen Grauman

---

2D example for dilation

Slide credit: Shapiro & Stockman

---

Dilation vs. Erosion

At each position:

- **Dilation**: if current pixel is 1, then set all the output pixels corresponding to structuring element to 1.

- **Erosion**: if every pixel under the structuring element is 1, then set the output pixel corresponding to the current pixel to 1.
Example for Erosion (1D)

Input image:

```
1 0 0 0 1 1 0 1 1
```

Structuring Element:

```
1 1 1
```

Output Image:

```
0 0 0 0 0 0 0 0 0
```

Slide credit: Kristen Grauman

Example for Erosion (1D)

Input image:

```
1 0 0 0 1 1 0 1 1
```

Structuring Element:

```
1 1 1
```

Output Image:

```
0 0 0 0 0 0 0 0 0
```

Slide credit: Kristen Grauman

Example for Erosion

Input image:

```
1 0 0 0 1 1 0 1 1
```

Structuring Element:

```
1 1 1
```

Output Image:

```
0 0 0 0 0 0 0 0 0
```

Slide credit: Kristen Grauman
Example for Erosion

Input image:

```
1 0 0 0 1 1 0 1 1
```

Structuring Element:

```
1 1 1
```

Output Image:

```
0 0 0 0 0 0 0 0 0
```

Example for Erosion

Input image:

```
1 0 0 0 1 1 0 1 1
```

Structuring Element:

```
1 1 1
```

Output Image:

```
0 0 0 0 0 0 0 0 0
```

Example for Erosion

Input image:

```
1 0 0 0 1 1 0 1 1
```

Structuring Element:

```
1 1 1
```

Output Image:

```
0 0 0 0 0 0 0 0 0
```
Example for Erosion

Input image: 1 0 0 0 1 1 0 1 1

Structuring Element: 1 1 1

Output Image: 0 0 0 0 1 0 0 1

Slide credit: Kristen Grauman
Example for Erosion

Input image: 1 0 0 0 1 1 0 1 1

Structuring Element: 1 1

Output Image: 0 0 0 0 0 1 0 0 1

Note that the object gets smaller

>> help imerode

2D example for erosion

Opening

- Erode, then dilate
- Remove small objects, keep original shape
Closing

• Dilate, then erode
• Fill holes, but keep original shape

Before closing

After closing

Applet: http://bigwww.epfl.ch/demo/imorpho/start.php

Issues

• What to do with “noisy” binary outputs?
  – Holes
  – Extra small fragments

• How to demarcate multiple regions of interest?
  – Count objects
  – Compute further features per object

Connected components

• Identify distinct regions of “connected pixels”

>> L = bwlabel(BW,conn)
Connectedness

- Defining which pixels are considered neighbors

4-connected

\[ \begin{array}{ccc}
\text{A} & \text{B} & \text{C} \\
\text{D} & \text{E} & \text{F} \\
\end{array} \]

8-connected

\[ \begin{array}{ccc}
\text{A} & \text{B} & \text{C} \\
\text{D} & \text{E} & \text{F} \\
\end{array} \]

Region properties

- Given connected components, can compute simple features per blob, such as:
  - Area (num pixels in the region)
  - Centroid (average x and y position of pixels in the region)
  - Bounding box (min and max coordinates)
Binary image analysis: basic steps (recap)

- Convert the image into binary form
  - Thresholding
- Clean up the thresholded image
  - Morphological operators
- Extract separate blobs
  - Connected components
- Describe the blobs with region properties

Matlab

- \( L = \text{bwlabel}(\text{BW},8) \);
- \( \text{STATS} = \text{regionprops}(L, \text{PROPERTIES}) \);
  - 'Area'
  - 'Centroid'
  - 'BoundingBox'
  - 'Orientation', ...
- \( \text{IM2} = \text{imerode}(\text{IM}, \text{SE}); \)
- \( \text{IM2} = \text{imdilate}(\text{IM}, \text{SE}); \)
- \( \text{IM2} = \text{imclose}(\text{IM}, \text{SE}); \)
- \( \text{IM2} = \text{imopen}(\text{IM}, \text{SE}); \)

Example using binary image analysis: segmentation of a liver

[Diagram of liver segmentation steps]
Binary images

- **Pros**
  - Can be fast to compute, easy to store
  - Simple processing techniques available
  - Lead to some useful compact shape descriptors

- **Cons**
  - Hard to get “clean” silhouettes
  - Noise common in realistic scenarios
  - Can be too coarse of a representation

---

Summary

- **Operations, tools**
  - Derivative filters
  - Smoothing, morphology
  - Thresholding
  - Connected components
  - Matching filters
  - Histograms

- **Features, representations**
  - Edges, gradients
  - Blobs/regions
  - Local patterns
  - Textures (next)
  - Color distributions

---

Coming up

- **Texture**
  - Read Szeliski 10.5
Questions?
See you Thursday!