Image warping and stitching
May 5th, 2015

Yong Jae Lee
UC Davis
Announcements

• PS2 due next Friday
Last time

• Interactive segmentation
• Feature-based alignment
 – 2D transformations
 – Affine fit
 – RANSAC
Alignment problem

- In alignment, we will fit the parameters of some transformation according to a set of matching feature pairs (“correspondences”).
Main questions

Warping: Given a source image and a transformation, what does the transformed output look like?

Alignment: Given two images, what is the transformation between them?

Slide credit: Kristen Grauman
Motivation for feature-based alignment: Recognition
Motivation for feature-based alignment: Medical image registration
Motivation for feature-based alignment: Image mosaics
Parametric (global) warping

Examples of parametric warps:

- Translation
- Rotation
- Aspect
- Affine
- Perspective

Source: Alyosha Efros
Parametric (global) warping

Transformation T is a coordinate-changing machine:

$$p' = T(p)$$

What does it mean that T is **global**?

- Is the same for any point p
- Can be described by just a few numbers (parameters)

Let’s represent T as a matrix:

$$p' = Mp$$

$$\begin{bmatrix}
 x' \\
 y'
\end{bmatrix} = \begin{bmatrix}
 x \\
 y
\end{bmatrix}$$

Source: Alyosha Efros
Homogeneous coordinates

To convert to homogeneous coordinates:

\[(x, y) \Rightarrow \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}\]

homogeneous image coordinates

Converting *from* homogeneous coordinates

\[
\begin{bmatrix} x \\ y \\ w \end{bmatrix} \Rightarrow (x/w, y/w)
\]
Fitting an affine transformation

• Assuming we know the correspondences, how do we get the transformation?

\[
\begin{bmatrix}
 x'_i \\
 y'_i
\end{bmatrix}
= \begin{bmatrix}
 m_1 & m_2 \\
 m_3 & m_4
\end{bmatrix}
\begin{bmatrix}
 x_i \\
 y_i
\end{bmatrix}
+ \begin{bmatrix}
 t_1 \\
 t_2
\end{bmatrix}
\]
2D Affine Transformations

\[
\begin{bmatrix}
 x' \\
 y' \\
 w'
\end{bmatrix} = \begin{bmatrix}
 a & b & c \\
 d & e & f \\
 0 & 0 & 1
\end{bmatrix} \begin{bmatrix}
 x \\
 y \\
 w
\end{bmatrix}
\]

Affine transformations are combinations of …

- Linear transformations, and
- Translations

Parallel lines remain parallel
Projective Transformations

\[
\begin{bmatrix}
 x' \\
 y' \\
 w'
\end{bmatrix} = \begin{bmatrix}
 a & b & c \\
 d & e & f \\
 g & h & i
\end{bmatrix} \begin{bmatrix}
 x \\
 y \\
 w
\end{bmatrix}
\]

Projective transformations:
- Affine transformations, and
- Projective warps

Parallel lines do not necessarily remain parallel
Fitting an affine transformation

- Assuming we know the correspondences, how do we get the transformation?

\[
\begin{bmatrix}
 x'_i \\
 y'_i
\end{bmatrix} = \begin{bmatrix}
 m_1 & m_2 \\
 m_3 & m_4
\end{bmatrix} \begin{bmatrix}
 x_i \\
 y_i
\end{bmatrix} + \begin{bmatrix}
 t_1 \\
 t_2
\end{bmatrix}
\]

Slide credit: Kristen Grauman
RANSAC: General form

- **RANSAC loop:**
 1. Randomly select a seed group of points on which to base transformation estimate (e.g., a group of matches)
 2. Compute transformation from seed group
 3. Find *inliers* to this transformation
 4. If the number of inliers is sufficiently large, re-compute estimate of transformation on all of the inliers

- Keep the transformation with the largest number of inliers
RANSAC example: Translation

Putative matches
RANSAC example: Translation

Select *one* match, count *inliers*
RANSAC example: Translation

Select one match, count inliers
RANSAC example: Translation

Find “average” translation vector
RANSAC pros and cons

• Pros
 • Simple and general
 • Applicable to many different problems
 • Often works well in practice

• Cons
 • Lots of parameters to tune
 • Doesn’t work well for low inlier ratios (too many iterations, or can fail completely)
 • Can’t always get a good initialization of the model based on the minimum number of samples
Today

• Image mosaics
 – Fitting a 2D transformation
 • Homography
 – 2D image warping
 – Computing an image mosaic
HP frames commercials

- http://www.youtube.com/watch?v=2RPl5vPEoQk
Mosaics

Obtain a wider angle view by combining multiple images.

Slide credit: Kristen Grauman
Panoramic Photos are old

- Sydney, 1875

Beirut, late 1800’s

Slide credit: James Hays
How to stitch together a panorama (a.k.a. mosaic)?

- **Basic Procedure**
 - Take a sequence of images from the same position
 - Rotate the camera about its optical center
 - Compute transformation between second image and first
 - Transform the second image to overlap with the first
 - Blend the two together to create a mosaic
 - (If there are more images, repeat)

- **...but wait**, why should this work at all?
 - What about the 3D geometry of the scene?
 - Why aren’t we using it?
Pinhole camera

- Pinhole camera is a simple model to approximate imaging process, perspective \textit{projection}.

If we treat pinhole as a point, only one ray from any given point can enter the camera.

Slide credit: Kristen Grauman
Fig from Forsyth and Ponce
Mosaics: generating synthetic views

Can generate any synthetic camera view as long as it has **the same center of projection**!
Obtain a wider angle view by combining multiple images.
Image reprojection

The mosaic has a natural interpretation in 3D

- The images are reprojected onto a common plane
- The mosaic is formed on this plane
- Mosaic is a synthetic wide-angle camera

Source: Steve Seitz
Image reprojection

Basic question
- How to relate two images from the same camera center?
 - how to map a pixel from PP1 to PP2

Answer
- Cast a ray through each pixel in PP1
- Draw the pixel where that ray intersects PP2

Observation:
Rather than thinking of this as a 3D reprojection, think of it as a 2D image warp from one image to another.

Source: Alyosha Efros
Image reprojection: Homography

A projective transform is a mapping between any two PPs with the same center of projection

- rectangle should map to arbitrary quadrilateral
- parallel lines aren’t preserved
- but must preserve straight lines

called **Homography**

\[
\begin{bmatrix}
w x' \\
w y' \\
w \\
p'
\end{bmatrix} = \begin{bmatrix}
* & * & * \\
* & * & * \\
* & * & * \\
1 & 1 & 1
\end{bmatrix} \begin{bmatrix}
x \\
y \\
l
\end{bmatrix}
\]

Source: Alyosha Efros
The projective plane

Why do we need homogeneous coordinates?
- represent points at infinity, homographies, perspective projection, multi-view relationships

What is the geometric intuition?
- a point in the image is a *ray* in projective space

- Each *point* \((x, y)\) on the plane is represented by a *ray* \((sx, sy, s)\)
 - all points on the ray are equivalent: \((x, y, 1) \cong (sx, sy, s)\)
To compute the homography given pairs of corresponding points in the images, we need to set up an equation where the parameters of H are the unknowns...
Solving for homographies

\[
p' = Hp
\]

\[
\begin{bmatrix}
w x' \\
w y' \\
w
\end{bmatrix} = \begin{bmatrix}
h_{00} & h_{01} & h_{02} \\
h_{10} & h_{11} & h_{12} \\
h_{20} & h_{21} & h_{22}
\end{bmatrix} \begin{bmatrix}
x \\
y \\
1
\end{bmatrix}
\]

Upto a scale factor.
Constraint Frobenius norm of H to be 1.

Problem to be solved:

\[
\min \| Ah - b \|^2
\]

s.t. \(\| h \|^2 = 1 \)

where vector of unknowns \(h = [h_{00}, h_{01}, h_{02}, h_{10}, h_{11}, h_{12}, h_{20}, h_{21}, h_{22}]^T \)

Adapted from Devi Parikh
Solving for homographies

\[
\begin{bmatrix}
wx_i' \\
y_i' \\
w
\end{bmatrix} = \begin{bmatrix} h_{00} & h_{01} & h_{02} \\
h_{10} & h_{11} & h_{12} \\
h_{20} & h_{21} & h_{22}
\end{bmatrix} \begin{bmatrix} x_i \\
y_i \\
1
\end{bmatrix}
\]

\[wx_i' = h_{00}x_i + h_{01}y_i + h_{02}\]

\[wy_i' = h_{10}x_i + h_{11}y_i + h_{12}\]

\[w = h_{20}x_i + h_{21}y_i + h_{22}\]

\[x_i'(h_{20}x_i + h_{21}y_i + h_{22}) = h_{00}x_i + h_{01}y_i + h_{02}\]

\[y_i'(h_{20}x_i + h_{21}y_i + h_{22}) = h_{10}x_i + h_{11}y_i + h_{12}\]
Solving for homographies

\[
\begin{bmatrix}
x_1 & y_1 & 1 & 0 & 0 & 0 & -x'_1 & x_1 & -x'_1 \\
0 & 0 & 0 & x_1 & y_1 & 1 & -y'_1 & x_1 & -y'_1 \\
x_n & y_n & 1 & 0 & 0 & 0 & -x'_n & x_n & -x'_n \\
0 & 0 & 0 & x_n & y_n & 1 & -y'_n & x_n & -y'_n \\
\end{bmatrix}
\begin{bmatrix}
h_{00} \\
h_{01} \\
h_{02} \\
h_{10} \\
h_{11} \\
h_{12} \\
h_{20} \\
h_{21} \\
h_{22} \\
\end{bmatrix}
= \begin{bmatrix}
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
\end{bmatrix}
\]

A \quad 2n \times 9
\quad h \quad 9
\quad 0 \quad 2n

Defines a least squares problem:

\[
\text{minimize } \|Ah - 0\|^2
\]

- Since \(h \) is only defined up to scale, solve for unit vector \(\hat{h} \) (i.e., \(\|h\|^2 = 1 \))
- Solution: \(\hat{h} = \text{eigenvector of } A^TA \text{ with smallest eigenvalue} \)
- Works with 4 or more points
To apply a given homography H

- Compute $p' = Hp$ (regular matrix multiply)
- Convert p' from homogeneous to image coordinates

$$\begin{bmatrix}
wx' \\
w' \\
wy' \\
w
\end{bmatrix} = \begin{bmatrix}
* \\
* \\
* \\
1
\end{bmatrix} \begin{bmatrix}
x \\
y \\
1
\end{bmatrix} = \begin{bmatrix}
wx' \\
w' \\
w' \\
w
\end{bmatrix}$$
Today

• RANSAC for robust fitting
 – Lines, translation

• Image mosaics
 – Fitting a 2D transformation
 • Homography
 – 2D image warping
 – Computing an image mosaic
Image warping

Given a coordinate transform and a source image \(f(x,y) \), how do we compute a transformed image \(g(x',y') = f(T(x,y)) \)?
Forward warping

Send each pixel $f(x,y)$ to its corresponding location $(x',y') = T(x,y)$ in the second image.

Q: what if pixel lands “between” two pixels?
Forward warping

Send each pixel $f(x,y)$ to its corresponding location $(x',y') = T(x,y)$ in the second image.

Q: what if pixel lands “between” two pixels?
A: distribute color among neighboring pixels (x',y')
 – Known as “splatting”
Inverse warping

Get each pixel $g(x',y')$ from its corresponding location $(x,y) = T^{-1}(x',y')$ in the first image.

Q: what if pixel comes from “between” two pixels?
Inverse warping

Get each pixel $g(x',y')$ from its corresponding location $(x,y) = T^{-1}(x',y')$ in the first image.

Q: what if pixel comes from “between” two pixels?

A: *Interpolate* color value from neighbors

- nearest neighbor, bilinear…

>> help interp2
Bilinear interpolation

Sampling at $f(x,y)$:

$$f(x, y) = (1 - a)(1 - b) \cdot f[i, j] + a(1 - b) \cdot f[i + 1, j] + ab \cdot f[i + 1, j + 1] + (1 - a)b \cdot f[i, j + 1].$$
Recap: How to stitch together a panorama (a.k.a. mosaic)?

• Basic Procedure
 – Take a sequence of images from the same position
 • Rotate the camera about its optical center
 – Compute transformation (homography) between second image and first using corresponding points.
 – Transform the second image to overlap with the first.
 – Blend the two together to create a mosaic.
 – (If there are more images, repeat)
Image warping with homographies

image plane in front

black area where no pixel maps to

Source: Steve Seitz
Image rectification

Slide credit: Kristen Grauman
Analysing patterns and shapes

What is the shape of the b/w floor pattern?

The floor (enlarged)

Automatically rectified floor

Slide from Antonio Criminisi
Analysing patterns and shapes

From Martin Kemp *The Science of Art* (manual reconstruction)

Slide from Antonio Criminisi
Analysing patterns and shapes

What is the (complicated) shape of the floor pattern?

St. Lucy Altarpiece, D. Veneziano

Slide from Criminisi
Analysing patterns and shapes

From Martin Kemp, *The Science of Art (manual reconstruction)*
Analyzing patterns and shapes

The Ambassadors by Hans Holbein the Younger, 1533
Julian Beever: Manual Homographies

http://users.skynet.be/J.Beever/pave.htm
Changing camera center

Does it still work?

Source: Alyosha Efros
Recall: same camera center

Can generate synthetic camera view as long as it has **the same center of projection**.

Source: Alyosha Efros
…Or: Planar scene (or far away)

PP3 is a projection plane of both centers of projection, so we are OK!

This is how big aerial photographs are made

Source: Alyosha Efros
RANSAC for estimating homography

- RANSAC loop:
 1. Select four feature pairs (at random)
 2. Compute homography H (exact)
 3. Compute inliers where $SSD(p_i', Hp_i) < \varepsilon$
 4. Keep largest set of inliers
 5. Re-compute least-squares H estimate on all of the inliers
Robust feature-based alignment
Robust feature-based alignment

- Extract features
Robust feature-based alignment

• Extract features
• Compute *putative matches*

Source: L. Lazebnik
Robust feature-based alignment

- Extract features
- Compute *putative matches*
- Loop:
 - Hypothesize transformation T (small group of putative matches that are related by T)

Source: L. Lazebnik
Robust feature-based alignment

• Extract features
• Compute _putative matches_
• Loop:
 – _Hypothesize_ transformation \(T \) (small group of putative matches that are related by \(T \))
 – _Verify_ transformation (search for other matches consistent with \(T \))

Source: L. Lazebnik
Robust feature-based alignment

- Extract features
- Compute *putative matches*
- Loop:
 - *Hypothesize* transformation T (small group of putative matches that are related by T)
 - *Verify* transformation (search for other matches consistent with T)

Source: L. Lazebnik
Summary: alignment & warping

• Write 2d transformations as matrix-vector multiplication (including translation when we use homogeneous coordinates)

• Fitting transformations: solve for unknown parameters given corresponding points from two views (affine, projective (homography)).

• Perform image warping (forward, inverse)

• Mosaics: uses homography and image warping to merge views taken from same center of projection.
Next time: which features should we match?

Slide credit: Kristen Grauman
Questions?