Local features and image matching
May 7th, 2015

Yong Jae Lee
UC Davis
Last time

• RANSAC for robust fitting
 – Lines, translation
• Image mosaics
 – Fitting a 2D transformation
 • Homography
Today

Mosaics recap:
How to warp one image to the other, given H?

How to detect *which features* to match?
Motivation for feature-based alignment: Image mosaics
Projective Transformations

\[
\begin{bmatrix}
 x' \\
 y' \\
 w'
\end{bmatrix}
= \begin{bmatrix}
 a & b & c \\
 d & e & f \\
 g & h & i
\end{bmatrix}
\begin{bmatrix}
 x \\
 y \\
 w
\end{bmatrix}
\]

Projective transformations:
- Affine transformations, and
- Projective warps

Parallel lines do not necessarily remain parallel
How to stitch together a panorama (a.k.a. mosaic)?

• Basic Procedure
 – Take a sequence of images from the same position
 • Rotate the camera about its optical center
 – Compute transformation between second image and first
 – Transform the second image to overlap with the first
 – Blend the two together to create a mosaic
 – (If there are more images, repeat)
Obtain a wider angle view by combining multiple images.
How to stitch together a panorama (a.k.a. mosaic)?

• Basic Procedure
 – Take a sequence of images from the same position
 • Rotate the camera about its optical center
 – Compute transformation between second image and first
 – Transform the second image to overlap with the first
 – Blend the two together to create a mosaic
 – (If there are more images, repeat)

• …but **wait**, why should this work at all?
 – What about the 3D geometry of the scene?
 – Why aren’t we using it?
Image reprojection

Basic question

• How to relate two images from the same camera center?
 – how to map a pixel from PP1 to PP2

Answer

• Cast a ray through each pixel in PP1
• Draw the pixel where that ray intersects PP2

Observation:
Rather than thinking of this as a 3D reprojection, think of it as a 2D **image warp** from one image to another.

Source: Alyosha Efros
Image reprojection: Homography

A projective transform is a mapping between any two PPs with the same center of projection

- rectangle should map to arbitrary quadrilateral
- parallel lines aren’t preserved
- but must preserve straight lines

called **Homography**

\[
\begin{bmatrix}
w x' \\
w y' \\
w \\
w p'
\end{bmatrix} = \begin{bmatrix}
* & * & * \\
* & * & * \\
* & * & * \\
1 & 1 & 1
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
l
\end{bmatrix}
\]

Source: Alyosha Efros
Homography

To compute the homography given pairs of corresponding points in the images, we need to set up an equation where the parameters of H are the unknowns…
Solving for homographies

\[\mathbf{p'} = \mathbf{Hp} \]

\[
\begin{bmatrix}
wx' \\
wz' \\
w
\end{bmatrix} =
\begin{bmatrix}
h_{00} & h_{01} & h_{02} \\
h_{10} & h_{11} & h_{12} \\
h_{20} & h_{21} & h_{22}
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
1
\end{bmatrix}
\]

Defined up to a scale factor.
Constrain Frobenius norm of \(\mathbf{H} \) to be 1.

Problem to be solved:

\[
\min \| A\mathbf{h} - \mathbf{b} \|^2
\]

\[s.t. \quad \| \mathbf{h} \|^2 = 1 \]

where vector of unknowns \(\mathbf{h} = [h_{00}, h_{01}, h_{02}, h_{10}, h_{11}, h_{12}, h_{20}, h_{21}, h_{22}]^T \)

Adapted from Devi Parikh
Solving for homographies

\[
\begin{bmatrix}
wx_i' \\
w_yi' \\
w
\end{bmatrix} =
\begin{bmatrix}
h_{00} & h_{01} & h_{02} \\
h_{10} & h_{11} & h_{12} \\
h_{20} & h_{21} & h_{22}
\end{bmatrix}
\begin{bmatrix}
x_i \\
y_i \\
1
\end{bmatrix}
\]

\[
w x_i' = h_{00} x_i + h_{01} y_i + h_{02}
\]
\[
w y_i' = h_{10} x_i + h_{11} y_i + h_{12}
\]
\[
w = h_{20} x_i + h_{21} y_i + h_{22}
\]

There are 9 variables \(h_{00}, \ldots, h_{22}\).

Are there 9 degrees of freedom?

No. We can multiply all \(h_{ij}\) by nonzero scalar \(k\) without changing the equations:

\[
x_i' = \frac{h_{00} x_i + h_{01} y_i + h_{02}}{h_{20} x_i + h_{21} y_i + h_{22}}
\]
\[
y_i' = \frac{h_{10} x_i + h_{11} y_i + h_{12}}{h_{20} x_i + h_{21} y_i + h_{22}}
\]
\[
x_i' = \frac{k h_{00} x_i + k h_{01} y_i + k h_{02}}{k h_{20} x_i + k h_{21} y_i + k h_{22}}
\]
\[
y_i' = \frac{k h_{10} x_i + k h_{11} y_i + k h_{12}}{k h_{20} x_i + k h_{21} y_i + k h_{22}}
\]
Enforcing 8 DOF

One approach: set $h_{22} = 1$

$$x'_i = \frac{h_{00}x_i + h_{01}y_i + h_{02}}{h_{20}x_i + h_{21}y_i + 1} \quad \quad \quad y'_i = \frac{h_{10}x_i + h_{11}y_i + h_{12}}{h_{20}x_i + h_{21}y_i + 1}$$

Second approach: impose unit vector constraint

$$x'_i = \frac{h_{00}x_i + h_{01}y_i + h_{02}}{h_{20}x_i + h_{21}y_i + h_{22}} \quad \quad \quad y'_i = \frac{h_{10}x_i + h_{11}y_i + h_{12}}{h_{20}x_i + h_{21}y_i + h_{22}}$$

Subject to: $h_{00}^2 + h_{01}^2 + h_{02}^2 + h_{10}^2 + h_{11}^2 + h_{12}^2 + h_{20}^2 + h_{21}^2 + h_{22}^2 = 1$
Solving for homographies

\[
\begin{bmatrix}
wx'_i \\
w y'_i \\
w
\end{bmatrix} = \begin{bmatrix}
h_{00} & h_{01} & h_{02} \\
h_{10} & h_{11} & h_{12} \\
h_{20} & h_{21} & h_{22}
\end{bmatrix} \begin{bmatrix}
x_i \\
y_i \\
1
\end{bmatrix}
\]

\[
x'_i = h_{00}x_i + h_{01}y_i + h_{02}
\]

\[
y'_i = h_{10}x_i + h_{11}y_i + h_{12}
\]

\[
w = h_{20}x_i + h_{21}y_i + h_{22}
\]

\[
x'_i(h_{20}x_i + h_{21}y_i + h_{22}) = h_{00}x_i + h_{01}y_i + h_{02}
\]

\[
y'_i(h_{20}x_i + h_{21}y_i + h_{22}) = h_{10}x_i + h_{11}y_i + h_{12}
\]

\[
\begin{bmatrix}
x_i & y_i & 1 & 0 & 0 & 0 & -x'_i x_i & -x'_i y_i & -x'_i \\
0 & 0 & 0 & x_i & y_i & 1 & -y'_i x_i & -y'_i y_i & -y'_i
\end{bmatrix} \begin{bmatrix}
h_{00} \\
h_{01} \\
h_{02} \\
h_{10} \\
h_{11} \\
h_{12} \\
h_{20} \\
h_{21} \\
h_{22}
\end{bmatrix} = \begin{bmatrix}
0 \\
0
\end{bmatrix}
\]
Solving for homographies

\[\begin{bmatrix} x_1 & y_1 & 1 & 0 & 0 & 0 & -x'_1 x_1 & -x'_1 y_1 & -x'_1 \\ 0 & 0 & 0 & x_1 & y_1 & 1 & -y'_1 x_1 & -y'_1 y_1 & -y'_1 \\ \vdots \\ x_n & y_n & 1 & 0 & 0 & 0 & -x'_n x_n & -x'_n y_n & -x'_n \\ 0 & 0 & 0 & x_n & y_n & 1 & -y'_n x_n & -y'_n y_n & -y'_n \end{bmatrix} \begin{bmatrix} h_{00} \\ h_{01} \\ h_{02} \\ h_{10} \\ h_{11} \\ h_{12} \\ h_{20} \\ h_{21} \\ h_{22} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \]

\[\mathbf{A} \quad 2n \times 9 \quad \mathbf{h} \quad 9 \quad \mathbf{0} \quad 2n \]

Defines a least squares problem:

\[\text{minimize} \quad \| \mathbf{A} \mathbf{h} - \mathbf{0} \|^2 \]

- Since \(\mathbf{h} \) is only defined up to scale, solve for unit vector \(\hat{\mathbf{h}} \) (i.e., \(\| \mathbf{h} \|^2 = 1 \))
- Solution: \(\hat{\mathbf{h}} = \) eigenvector of \(\mathbf{A}^T \mathbf{A} \) with smallest eigenvalue
- Works with 4 or more points
Projective: # correspondences?

How many correspondences needed for projective?
Homography

To apply a given homography H

- Compute $p' = Hp$ (regular matrix multiply)
- Convert p' from homogeneous to image coordinates

$$\begin{bmatrix} wx' \\ wy' \\ w \end{bmatrix} = \begin{bmatrix} * & * & * \\ * & * & * \\ * & * & * \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Slide credit: Kristen Grauman
Image warping

Given a coordinate transform and a source image \(f(x, y) \), how do we compute a transformed image \(g(x', y') = f(T(x, y)) \)?

Slide from Alyosha Efros, CMU
Forward warping

Send each pixel \(f(x,y) \) to its corresponding location \((x',y') = T(x,y) \) in the second image.

Q: what if pixel lands “between” two pixels?
Forward warping

Send each pixel $f(x,y)$ to its corresponding location $(x',y') = T(x,y)$ in the second image.

Q: what if pixel lands “between” two pixels?

A: distribute color among neighboring pixels (x',y') – Known as “splatting”
Inverse warping

Get each pixel $g(x', y')$ from its corresponding location $(x, y) = T^{-1}(x', y')$ in the first image.

Q: what if pixel comes from “between” two pixels?
Inverse warping

Get each pixel $g(x',y')$ from its corresponding location $(x,y) = T^{-1}(x',y')$ in the first image

Q: what if pixel comes from “between” two pixels?
A: Interpolate color value from neighbors
 - nearest neighbor, bilinear…

>> help interp2
Bilinear interpolation

Sampling at $f(x,y)$:

\[
\begin{align*}
(i, j + 1) & \quad (i + 1, j + 1) \\
\quad & \quad \quad \quad \downarrow \\
(x, y) & \quad \quad \quad \quad \quad \downarrow \\
(i, j) & \quad (i + 1, j) \\
\end{align*}
\]

\[
f(x, y) = (1 - a)(1 - b) \ f[i, j] + a(1 - b) \ f[i + 1, j] + ab \ f[i + 1, j + 1] + (1 - a)b \ f[i, j + 1]
\]
Image warping with homographies

Source: Steve Seitz
Image rectification
Analysing patterns and shapes

What is the shape of the b/w floor pattern?

The floor (enlarged)

Slide from Antonio Criminisi

Automatically rectified floor
Analysing patterns and shapes

From Martin Kemp *The Science of Art* (manual reconstruction)

Slide from Antonio Criminisi
Analysing patterns and shapes

What is the (complicated) shape of the floor pattern?

Automatically rectified floor

St. Lucy Altarpiece, D. Veneziano

Slide from Criminisi
Analysing patterns and shapes

From Martin Kemp, *The Science of Art (manual reconstruction)*

Automatic rectification
Changing camera center

Does it still work?

PP1

PP2

synthetic PP

Source: Alyosha Efros
...Or: Planar scene (or far away)

PP3 is a projection plane of both centers of projection, so we are OK!
This is how big aerial photographs are made

Source: Alyosha Efros
RANSAC for estimating homography

RANSAC loop:
1. Select four feature pairs (at random)
2. Compute homography H (exact)
3. Compute inliers where \(SSD(p_i', Hp_i) < \varepsilon \)
4. Keep largest set of inliers
5. Re-compute least-squares H estimate on all of the inliers
Robust feature-based alignment

Source: L. Lazebnik
Robust feature-based alignment

- Extract features
Robust feature-based alignment

- Extract features
- Compute *putative matches*

Source: L. Lazebnik
Robust feature-based alignment

- Extract features
- Compute *putative matches*
- Loop:
 - *Hypothesize* transformation T (small group of putative matches that are related by T)

Source: L. Lazebnik
Robust feature-based alignment

- Extract features
- Compute *putative matches*
- Loop:
 - Hypothesize transformation T (small group of putative matches that are related by T)
 - Verify transformation (search for other matches consistent with T)

Source: L. Lazebnik
Robust feature-based alignment

- Extract features
- Compute *putative matches*
- Loop:
 - *Hypothesize* transformation \(T \) (small group of putative matches that are related by \(T \))
 - *Verify* transformation (search for other matches consistent with \(T \))

Source: L. Lazebnik
Summary: alignment & warping

• Write 2d transformations as matrix-vector multiplication (including translation when we use homogeneous coordinates)

• **Fitting transformations**: solve for unknown parameters given corresponding points from two views (affine, projective (homography)).

• Perform **image warping** (forward, inverse)

• **Mosaics**: uses homography and image warping to merge views taken from same center of projection.
Boundary extension

Creating and Exploring a Large Photorealistic Virtual Space

http://www.youtube.com/watch?v=E0rboU10rPo
Creating and Exploring a Large Photorealistic Virtual Space

Current view, and desired view in green

Synthesized view from new camera

Induced camera motion
Today

Mosaics recap:
How to warp one image to the other, given H?

How to detect *which features* to match?
Detecting local invariant features

• Detection of interest points
 – Harris corner detection
 – (Scale invariant blob detection: LoG)

• (Next time: description of local patches)
Local features: main components

1) Detection: Identify the interest points

2) Description: Extract vector feature descriptor surrounding each interest point.

\[
x_1 = [x_1^{(1)}, \ldots, x_d^{(1)}]
\]

\[
x_2 = [x_1^{(2)}, \ldots, x_d^{(2)}]
\]

3) Matching: Determine correspondence between descriptors in two views
Local features: desired properties

• **Repeatability**
 – The same feature can be found in several images despite geometric and photometric transformations

• **Saliency**
 – Each feature has a distinctive description

• **Compactness and efficiency**
 – Many fewer features than image pixels

• **Locality**
 – A feature occupies a relatively small area of the image; robust to clutter and occlusion
Applications

• Local features are used for:
 – Image alignment
 – 3D reconstruction
 – Motion tracking
 – Robot navigation
 – Indexing and database retrieval
 – Object recognition
A hard feature matching problem

NASA Mars Rover images
Answer below (look for tiny colored squares…)

NASA Mars Rover images with SIFT feature matches
Figure by Noah Snavely
Goal: interest operator repeatability

• We want to detect (at least some of) the same points in both images.

No chance to find true matches!

• Yet we have to be able to run the detection procedure independently per image.
Goal: descriptor distinctiveness

• We want to be able to reliably determine which point goes with which.

• Must provide some invariance to geometric and photometric differences between the two views.
Local features: main components

1) Detection: Identify the interest points

2) Description: Extract vector feature descriptor surrounding each interest point.

3) Matching: Determine correspondence between descriptors in two views
• What points would you choose?
Corners as distinctive interest points

We should easily recognize the point by looking through a small window

Shifting a window in any direction should give a large change in intensity

“flat” region: no change in all directions

“edge”: no change along the edge direction

“corner”: significant change in all directions

Slide credit: Alyosha Efros, Darya Frolova, Denis Simakov
Corners as distinctive interest points

\[M = \sum w(x, y) \begin{bmatrix} I_x I_x & I_x I_y \\ I_x I_y & I_y I_y \end{bmatrix} \]

2 x 2 matrix of image derivatives (averaged in neighborhood of a point).

Notation:

\[I_x \leftrightarrow \frac{\partial I}{\partial x} \quad I_y \leftrightarrow \frac{\partial I}{\partial y} \quad I_x I_y \leftrightarrow \frac{\partial I}{\partial x} \frac{\partial I}{\partial y} \]
What does this matrix reveal?

First, consider an axis-aligned corner:
What does this matrix reveal?

First, consider an axis-aligned corner:

\[
M = \sum \begin{bmatrix}
I_x^2 & I_xI_y \\
I_xI_y & I_y^2
\end{bmatrix} = \begin{bmatrix}
\lambda_1 & 0 \\
0 & \lambda_2
\end{bmatrix}
\]

This means dominant gradient directions align with x or y axis.

Look for locations where **both** \(\lambda\)'s are large.

If either \(\lambda\) is close to 0, then this is **not** corner-like.

What if we have a corner that is not aligned with the image axes?
What does this matrix reveal?

Since M is symmetric, we have

$$M = X \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} X^T$$

(Eigenvalue decomposition)

$$Mx_i = \lambda_i x_i$$

The *eigenvalues* of M reveal the amount of intensity change in the two principal orthogonal gradient directions in the window.
Corner response function

“edge”:
\[\lambda_1 \gg \lambda_2 \]
\[\lambda_2 \gg \lambda_1 \]

“corner”:
\[\lambda_1 \text{ and } \lambda_2 \text{ are large, } \lambda_1 \sim \lambda_2; \]

“flat” region
\[\lambda_1 \text{ and } \lambda_2 \text{ are small; } \]

\[f = \frac{\lambda_1 \lambda_2}{\lambda_1 + \lambda_2} \]
1) Compute M matrix for each image window to get their *cornerness* scores.

2) Find points whose surrounding window gave large corner response ($f >$ threshold)

3) Take the points of local maxima, i.e., perform non-maximum suppression
Example of Harris application
Example of Harris application

Compute corner response at every pixel.
Example of Harris application
Properties of the Harris corner detector

Rotation invariant? Yes
Properties of the Harris corner detector

Rotation invariant? Yes
Translation invariant? Yes
Properties of the Harris corner detector

Rotation invariant? Yes
Translation invariant? Yes
Scale invariant? No

All points will be classified as edges
Corner!
Summary

• Image warping to create mosaic, given homography

• Interest point detection
 – Harris corner detector
 – Next time:
 • Laplacian of Gaussian, automatic scale selection