Window-based models for generic object detection

May 21st, 2015

Yong Jae Lee
UC Davis
Previously

- Intro to generic object recognition
- Supervised classification
 - Main idea
 - Skin color detection example
Last time:
Example: skin color classification

- We can represent a class-conditional density using a histogram (a “non-parametric” distribution)
Last time:
Example: skin color classification

- We can represent a class-conditional density using a histogram (a “non-parametric” distribution)

Now we get a new image, and want to label each pixel as skin or non-skin.

\[P(skin \mid x) \propto P(x \mid skin)P(skin) \]
Last time:
Example: skin color classification

Now for every pixel in a new image, we can estimate probability that it is generated by skin.

Classify pixels based on these probabilities

- if \(p(\text{skin}|x) > \theta \), classify as skin
- if \(p(\text{skin}|x) < \theta \), classify as not skin

Brighter pixels \(\rightarrow \) higher probability of being skin
Today

• Window-based generic object detection
 – basic pipeline
 – boosting classifiers
 – face detection as case study
Generic category recognition: basic framework

• Build/train object model
 – Choose a representation
 – Learn or fit parameters of model / classifier
• Generate candidates in new image
• Score the candidates
Generic category recognition: representation choice

Window-based

Part-based
Window-based models
Building an object model

Simple holistic descriptions of image content
- grayscale / color histogram
- vector of pixel intensities
Window-based models
Building an object model

• Pixel-based representations sensitive to small shifts

• Color or grayscale-based appearance description can be sensitive to illumination and intra-class appearance variation
Window-based models
Building an object model

• Consider edges, contours, and (oriented) intensity gradients
Window-based models
Building an object model

• Consider edges, contours, and (oriented) intensity gradients

• Summarize local distribution of gradients with histogram
 ➢ Locally orderless: offers invariance to small shifts and rotations
 ➢ Contrast-normalization: try to correct for variable illumination
Window-based models
Building an object model

Given the representation, train a binary classifier
Discriminative classifier construction

Nearest neighbor

- 10^6 examples
- Shakhnarovich, Viola, Darrell 2003
- Berg, Berg, Malik 2005...

Neural networks

- LeCun, Bottou, Bengio, Haffner 1998
- Rowley, Baluja, Kanade 1998
- ...

Support Vector Machines

- Guyon, Vapnik
- Heisele, Serre, Poggio, 2001...

Boosting

- Viola, Jones 2001,
- Torralba et al. 2004,
- Opelt et al. 2006...

Conditional Random Fields

- McCallum, Freitag, Pereira 2000;
- Kumar, Hebert 2003
- ...

Slide adapted from Antonio Torralba
Generic category recognition: basic framework

• Build/train object model
 – Choose a representation
 – Learn or fit parameters of model / classifier

• Generate candidates in new image

• Score the candidates
Window-based models
Generating and scoring candidates

Car/non-car Classifier
Window-based object detection: recap

Training:
1. Obtain training data
2. Define features
3. Define classifier

Given new image:
1. Slide window
2. Score by classifier

Training examples

Feature extraction

Car/non-car Classifier
Discriminative classifier construction

Nearest neighbor

10^6 examples

Shakhnarovich, Viola, Darrell 2003
Berg, Berg, Malik 2005...

Neural networks

LeCun, Bottou, Bengio, Haffner 1998
Rowley, Baluja, Kanade 1998
...

Support Vector Machines

Guyon, Vapnik
Heisele, Serre, Poggio, 2001, ...

Boosting

Viola, Jones 2001,
Torralba et al. 2004,
Opelt et al. 2006, ...

Conditional Random Fields

McCallum, Freitag, Pereira 2000; Kumar, Hebert 2003
...

Slide adapted from Antonio Torralba
Boosting intuition

Slide credit: Paul Viola
Boosting illustration

Weights Increased
Boosting illustration

Weak Classifier 2
Boosting illustration

Weights Increased
Boosting illustration
Final classifier is a combination of weak classifiers
Boosting: training

• Initially, weight each training example equally
• In each boosting round:
 – Find the weak learner that achieves the lowest *weighted* training error
 – Raise weights of training examples misclassified by current weak learner
• Compute final classifier as linear combination of all weak learners (weight of each learner is directly proportional to its accuracy)
• Exact formulas for re-weighting and combining weak learners depend on the particular boosting scheme (e.g., AdaBoost)
Boosting: pros and cons

• Advantages of boosting
 • Integrates classification with feature selection
 • Flexibility in the choice of weak learners, boosting scheme
 • Testing is fast
 • Easy to implement

• Disadvantages
 • Needs many training examples
 • Often found not to work as well as an alternative discriminative classifier, support vector machine (SVM)
 - especially for many-class problems
Viola-Jones face detector

Accepted Conference on Computer Vision and Pattern Recognition 2001

Rapid Object Detection using a Boosted Cascade of Simple Features

Paul Viola
viola@merl.com
Mitsubishi Electric Research Labs
201 Broadway, 8th FL
Cambridge, MA 02139

Michael Jones
mjones@crl.dec.com
Compaq CRL
One Cambridge Center
Cambridge, MA 02142

Abstract

This paper describes a machine learning approach for vi-
tected at 15 frames per second on a conventional 700 MHz
Intel Pentium III. In other face detection systems, auxiliary
information, such as image differences in video sequences,
Viola-Jones face detector

Main idea:

- Represent local texture with efficiently computable “rectangular” features within window of interest
- Select discriminative features to be weak classifiers
- Use boosted combination of them as final classifier
- Form a cascade of such classifiers, rejecting clear negatives quickly
Viola-Jones detector: features

“Rectangular” filters
Feature output is difference between adjacent regions

Efficiently computable with integral image: any sum can be computed in constant time.
Computing sum within a rectangle

• Let A, B, C, D be the values of the integral image at the corners of a rectangle

• Then the sum of original image values within the rectangle can be computed as:
 \[\text{sum} = A - B - C + D \]

• Only 3 additions are required for any size of rectangle!
Viola-Jones detector: features

“Rectangular” filters
Feature output is difference between adjacent regions

Efficiently computable with integral image: any sum can be computed in constant time
Considering all possible filter parameters: position, scale, and type:

180,000+ possible features associated with each 24 x 24 window

Which subset of these features should we use to determine if a window has a face?

Use AdaBoost both to select the informative features and to form the classifier
Viola-Jones detector: AdaBoost

- Want to select the single rectangle feature and threshold that best separates positive (faces) and negative (non-faces) training examples, in terms of weighted error.

Resulting weak classifier:

\[
 h_t(x) = \begin{cases}
 +1 & \text{if } f_t(x) > \theta_t \\
 -1 & \text{otherwise}
 \end{cases}
\]

For next round, reweight the examples according to errors, choose another filter/threshold combo.
- Given example images \((x_1, y_1), \ldots, (x_n, y_n)\) where
 \(y_i = 0, 1\) for negative and positive examples respectively.

AdaBoost Algorithm

Start with uniform weights on training examples

For \(T\) rounds

Evaluate weighted error for each feature, pick best.

Re-weight the examples:
- Incorrectly classified \(\rightarrow\) more weight
- Correctly classified \(\rightarrow\) less weight

Final classifier is combination of the weak ones, weighted according to error they had.

Freund & Schapire 1995
Viola-Jones Face Detector: Results

First two features selected
• Even if the filters are fast to compute, each new image has a lot of possible windows to search.

• How to make the detection more efficient?
Cascading classifiers for detection

- Form a *cascade* with low false negative rates early on
- Apply less accurate but faster classifiers first to immediately discard windows that clearly appear to be negative
Viola-Jones detector: summary

Train cascade of classifiers with AdaBoost

Selected features, thresholds, and weights

Apply to each subwindow

Faces

Non-faces

Train with 5K positives, 350M negatives
Real-time detector using 38 layer cascade
6061 features in all layers

[Implementation available in OpenCV: http://www.intel.com/technology/computing/opencv/]
Viola-Jones detector: summary

• A seminal approach to real-time object detection
• Training is slow, but detection is very fast
• Key ideas
 ➢ *Integral images* for fast feature evaluation
 ➢ *Boosting* for feature selection
 ➢ *Attentional cascade* of classifiers for fast rejection of non-face windows

Viola-Jones Face Detector: Results
Viola-Jones Face Detector: Results
Viola-Jones Face Detector: Results
Detecting profile faces?

Can we use the same detector?
Viola-Jones Face Detector: Results
Example using Viola-Jones detector

Frontal faces detected and then tracked, character names inferred with alignment of script and subtitles.

Google now erases faces, license plates on Map Street View

By Elinor Mills, CNET News.com
Friday, August 24, 2007 01:37 PM

Google has gotten a lot of flack from privacy advocates for photographing faces and license plate numbers and displaying them on the Street View in Google Maps. Originally, the company said only people who identified themselves could ask the company to remove their image.

But Google has quietly changed that policy, partly in response to criticism, and now anyone can alert the company and have an image of a license plate or a recognizable face removed, not just the owner of the face or car, says Marissa Mayer, vice president of search products and user experience at Google.

"It's a good policy for users and also clarifies the intent of the product," she said in an interview following her keynote at the Search Engine Strategies conference in San Jose, Calif., Wednesday.

The policy change was made about 10 days after the launch of the product in late May, but was not publicly announced, according to Mayer. The company is removing images only when someone notifies them and not proactively, she said. "It was definitely a big policy change inside."
Consumer application: iPhoto 2009

http://www.apple.com/ilife/iphoto/
Consumer application: iPhoto 2009

Things iPhoto thinks are faces
Consumer application: iPhoto 2009

Can be trained to recognize pets!

What other categories are amenable to window-based representation?
Pedestrian detection

- Detecting upright, walking humans also possible using sliding window’s appearance/texture; e.g.,

SVM with Haar wavelets [Papageorgiou & Poggio, IJCV 2000]

Space-time rectangle features [Viola, Jones & Snow, ICCV 2003]

SVM with HoGs [Dalal & Triggs, CVPR 2005]
Window-based detection: strengths

- Sliding window detection and global appearance descriptors:
 - Simple detection protocol to implement
 - Good feature choices critical
 - Past successes for certain classes
Window-based detection: Limitations

- High computational complexity
 - For example: 250,000 locations x 30 orientations x 4 scales = 30,000,000 evaluations!
 - If training binary detectors independently, means cost increases linearly with number of classes
- With so many windows, false positive rate better be low
Limitations (continued)

• Not all objects are “box” shaped
Limitations (continued)

- Non-rigid, deformable objects not captured well with representations assuming a fixed 2d structure; or must assume fixed viewpoint
Limitations (continued)

- If considering windows in isolation, context is lost

![Sliding window](image1.png) ![Detector’s view](image2.png)

Figure credit: Derek Hoiem
Limitations (continued)

- In practice, often entails large, cropped training set (expensive)
- Requiring good match to a global appearance description can lead to sensitivity to partial occlusions
Summary

• Basic pipeline for window-based detection
 – Model/representation/classifier choice
 – Sliding window and classifier scoring

• Boosting classifiers: general idea

• Viola-Jones face detector
 – Exemplar of basic paradigm
 – Plus key ideas: rectangular features, Adaboost for feature selection, cascade

• Pros and cons of window-based detection
Questions?

See you Tuesday!