Outline

• **Last time:** window-based generic object detection
 – basic pipeline
 – face detection with boosting as case study
Generic category recognition: representation choice

Window-based

Part-based
Window-based models
Building an object model

- Consider edges, contours, and (oriented) intensity gradients
Window-based models
Building an object model

- Consider edges, contours, and (oriented) intensity gradients

- Summarize local distribution of gradients with histogram
 - Locally orderless: offers invariance to small shifts and rotations
 - Contrast-normalization: try to correct for variable illumination
Window-based models
Building an object model

Given the representation, train a binary classifier
Window-based models
Generating and scoring candidates

Car/non-car Classifier
Window-based object detection: recap

Training:
1. Obtain training data
2. Define features
3. Define classifier

Given new image:
1. Slide window
2. Score by classifier
Viola-Jones detector: summary

• A seminal approach to real-time object detection
• Training is slow, but detection is very fast
• Key ideas
 ➢ *Integral images* for fast feature evaluation

Viola-Jones detector: summary

- A seminal approach to real-time object detection
- Training is slow, but detection is very fast
- Key ideas
 - Integral images for fast feature evaluation
 - Boosting for feature selection

Viola-Jones detector: summary

- A seminal approach to real-time object detection
- Training is slow, but detection is very fast

Key ideas

- **Integral images** for fast feature evaluation
- **Boosting** for feature selection
- **Attentional cascade** of classifiers for fast rejection of non-face windows

Boosting intuition

Weak Classifier 1
Boosting illustration

Weights Increased
Boosting illustration

Weak Classifier 2
Boosting illustration

Weights Increased
Boosting illustration

Weak Classifier 3
Final classifier is a combination of weak classifiers
Discriminative classifier construction

Nearest neighbor

10^6 examples

Shakhnarovich, Viola, Darrell 2003
Berg, Berg, Malik 2005...

Neural networks

LeCun, Bottou, Bengio, Haffner 1998
Rowley, Baluja, Kanade 1998
...

Support Vector Machines

Guyon, Vapnik
Heisele, Serre, Poggio, 2001,...

Boosting

Viola, Jones 2001,
Torralba et al. 2004,
Opelt et al. 2006,...

Conditional Random Fields

McCallum, Freitag, Pereira 2000;
Kumar, Hebert 2003
...

Slide adapted from Antonio Torralba
Outline

• Last time: window-based generic object detection
 – basic pipeline
 – face detection with boosting as case study

• Today: discriminative classifiers for image recognition
 – nearest neighbors (+ scene match app)
 – support vector machines (+ gender, person app)
Nearest Neighbor classification

- Assign label of nearest training data point to each test data point

Black = negative
Red = positive

Voronoi partitioning of feature space for 2-category 2D data

Novel test example
Closest to a positive example from the training set, so classify it as positive.

Voronoi partitioning of feature space for 2-category 2D data
K-Nearest Neighbors classification

- For a new point, find the \(k \) closest points from training data
- Labels of the \(k \) points “vote” to classify

If query lands here, the 5 NN consist of 3 negatives and 2 positives, so we classify it as negative.

Black = negative
Red = positive

Source: D. Lowe
A nearest neighbor recognition example
Where in the World?

Where in the World?
Where in the World?
6+ million geotagged photos by 109,788 photographers

Annotated by Flickr users

Slides: James Hays
6+ million geotagged photos by 109,788 photographers

Annotated by Flickr users

Slides: James Hays
Which scene properties are relevant?
Spatial Envelope Theory of Scene Representation
Oliva & Torralba (2001)

A scene is a single surface that can be represented by global (statistical) descriptors
Global texture: capturing the “Gist” of the scene

Capture global image properties while keeping some spatial information

\[V = \{ \text{energy at each orientation and scale} \} = 6 \times 4 \text{ dimensions} \]

\[| V_t | \rightarrow \text{PCA} \rightarrow G \]

Gist descriptor

Oliva & Torralba IJCV 2001, Torralba et al. CVPR 2003
Which scene properties are relevant?

- Gist scene descriptor
- Color Histograms - L*A*B* 4x14x14 histograms
- Texton Histograms – 512 entry, filter bank based
- Line Features – Histograms of straight line stats
Scene Matches

Scene Matches

Scene Matches

The Importance of Data

Feature Performance

- First Nearest Neighbor Scene Match
- Mean Shift Mode, Largest Cluster
- Chance—Random Scenes

Percentage of Estimates Within 200km

Feature Used to Estimate Geolocation:
- Color
- Geometry
- Gist
- Lines
- 16x16
- Textons
- 5x5
- All features
Nearest neighbors: pros and cons

• Pros:
 – Simple to implement
 – Flexible to feature / distance choices
 – Naturally handles multi-class cases
 – Can do well in practice with enough representative data

• Cons:
 – Large search problem to find nearest neighbors
 – Storage of data
 – Must know we have a meaningful distance function
Outline

• Discriminative classifiers
 – Boosting (last time)
 – Nearest neighbors
 – Support vector machines
Linear classifiers
Lines in \mathbb{R}^2

Let \(w = \begin{bmatrix} a \\ c \end{bmatrix} \) and \(x = \begin{bmatrix} x \\ y \end{bmatrix} \)

\[
ax + cy + b = 0
\]
Lines in \mathbb{R}^2

Let \(w = \begin{bmatrix} a \\ c \end{bmatrix} \quad x = \begin{bmatrix} x \\ y \end{bmatrix} \)

\[ax + cy + b = 0 \]

\[w \cdot x + b = 0 \]
Lines in \mathbb{R}^2

Let $w = \begin{bmatrix} a \\ c \end{bmatrix}$, $x = \begin{bmatrix} x \\ y \end{bmatrix}$

$$ax + cy + b = 0$$

$$w \cdot x + b = 0$$
Let $w = \begin{bmatrix} a \\ c \end{bmatrix}$, $x = \begin{bmatrix} x \\ y \end{bmatrix}$

$$ax + cy + b = 0$$

$$w \cdot x + b = 0$$

Distance from point to line $D = \frac{|ax_0 + cy_0 + b|}{\sqrt{a^2 + c^2}}$
Let \(w = \begin{bmatrix} a \\ c \end{bmatrix} \) \(x = \begin{bmatrix} x \\ y \end{bmatrix} \)

\[
ax + cy + b = 0
\]

\[
w \cdot x + b = 0
\]

Distance from point to line:

\[
D = \frac{|ax_0 + cy_0 + b|}{\sqrt{a^2 + c^2}} = \frac{w^T x_0 + b}{\|w\|}
\]

\((x_0, y_0) \)
Linear classifiers

• Find linear function to separate positive and negative examples

\[
\begin{align*}
x_i \text{ positive: } & \quad x_i \cdot w + b \geq 0 \\
x_i \text{ negative: } & \quad x_i \cdot w + b < 0
\end{align*}
\]

Which line is best?
Support Vector Machines (SVMs)

- Discriminative classifier based on optimal separating line (for 2d case)
- Maximize the margin between the positive and negative training examples
Support vector machines

- Want line that maximizes the margin.

\[
\begin{align*}
\text{x}_i \text{ positive } (y_i = 1) : & \quad \text{x}_i \cdot \text{w} + b \geq 1 \\
\text{x}_i \text{ negative } (y_i = -1) : & \quad \text{x}_i \cdot \text{w} + b \leq -1 \\
\text{For support vectors,} & \quad \text{x}_i \cdot \text{w} + b = \pm 1
\end{align*}
\]

Support vector machines

- Want line that maximizes the margin.

\[wx + b = 1 \]
\[wx + b = 0 \]
\[wx + b = -1 \]

For support vectors:
\[x_i \cdot w + b = \pm 1 \]

Distance between point and line:
\[\frac{|x_i \cdot w + b|}{||w||} \]

Margin M:
\[M = \left| \frac{1}{||w||} - \frac{-1}{||w||} \right| = \frac{2}{||w||} \]
Support vector machines

- Want line that maximizes the margin.

\[w \cdot x + b = \pm 1 \]

\[x_i \text{ positive } (y_i = 1): \quad x_i \cdot w + b \geq 1 \]
\[x_i \text{ negative } (y_i = -1): \quad x_i \cdot w + b \leq -1 \]

For support vectors, \(x_i \cdot w + b = \pm 1 \)

Distance between point and line:

\[\frac{|x_i \cdot w + b|}{\|w\|} \]

Therefore, the margin is \(\frac{2}{\|w\|} \)
Finding the maximum margin line

1. Maximize margin \(\frac{2}{||w||} \)

2. Correctly classify all training data points:

- \(x_i \) positive \((y_i = 1)\): \(x_i \cdot w + b \geq 1 \)
- \(x_i \) negative \((y_i = -1)\): \(x_i \cdot w + b \leq -1 \)

Quadratic optimization problem:

Minimize \(\frac{1}{2} w^T w \)

Subject to \(y_i(w \cdot x_i + b) \geq 1 \)
Finding the maximum margin line

- Solution: \(\mathbf{w} = \sum_{i} \alpha_i y_i \mathbf{x}_i \)

- Learned weight
- Support vector
Finding the maximum margin line

• Solution: \[w = \sum \alpha_i y_i x_i \]
 \[b = y_i - w \cdot x_i \] (for any support vector)

\[w \cdot x + b = \sum \alpha_i y_i x_i \cdot x + b \]

• Classification function:

\[f(x) = \text{sign} \left(w \cdot x + b \right) \]

\[= \text{sign} \left(\sum \alpha_i y_i x_i \cdot x + b \right) \]

If \(f(x) < 0 \), classify as negative, if \(f(x) > 0 \), classify as positive
Questions

• What if the features are not 2d?
• What if the data is not linearly separable?
• What if we have more than just two categories?
Questions

• **What if the features are not 2d?**
 – Generalizes to d-dimensions – replace line with “hyperplane”

• **What if the data is not linearly separable?**

• **What if we have more than just two categories?**
Person detection with HoG’s & linear SVM’s

• Map each grid cell in the input window to a histogram counting the gradients per orientation.

• Train a linear SVM using training set of pedestrian vs. non-pedestrian windows.

Code available: http://pascal.inrialpes.fr/soft/olt/
Person detection with HoG’s & linear SVM’s

- Histograms of Oriented Gradients for Human Detection, Navneet Dalal, Bill Triggs, International Conference on Computer Vision & Pattern Recognition - June 2005
Questions

• What if the features are not 2d?
• **What if the data is not linearly separable?**
• What if we have more than just two categories?
Non-linear SVMs

- Datasets that are linearly separable with some noise work out great:

- But what are we going to do if the dataset is just too hard?

- How about… mapping data to a higher-dimensional space:
Non-linear SVMs: feature spaces

- General idea: the original input space can be mapped to some higher-dimensional feature space where the training set is separable:

\[\Phi: x \rightarrow \varphi(x) \]
The “Kernel Trick”

- The linear classifier relies on dot product between vectors $K(x_i, x_j) = x_i^T x_j$
Finding the maximum margin line

- Solution: \(\mathbf{w} = \sum_i \alpha_i y_i \mathbf{x}_i \)
 \[b = y_i - \mathbf{w} \cdot \mathbf{x}_i \] (for any support vector)

\[\mathbf{w} \cdot \mathbf{x} + b = \sum_i \alpha_i y_i \mathbf{x}_i \cdot \mathbf{x} + b \]
The “Kernel Trick”

- The linear classifier relies on dot product between vectors $K(x_i, x_j) = x_i^T x_j$

- If every data point is mapped into high-dimensional space via some transformation $\Phi: x \rightarrow \varphi(x)$, the dot product becomes:

$$K(x_i, x_j) = \varphi(x_i)^T \varphi(x_j)$$

- A kernel function is similarity function that corresponds to an inner product in some expanded feature space.

Slide from Andrew Moore’s tutorial: http://www.autonlab.org/tutorials/svm.html
Example

2-dimensional vectors $x = [x_1 \ x_2]$;

let $K(x_i, x_j) = (1 + x_i^T x_j)^2$

Need to show that $K(x_i, x_j) = \phi(x_i)^T \phi(x_j)$:

$$K(x_i, x_j) = (1 + x_i^T x_j)^2,$$

$$= 1 + x_{i1}^2 x_{j1}^2 + 2 x_{i1} x_{j1} x_{i2} x_{j2} + x_{i2}^2 x_{j2}^2 + 2 x_{i1} x_{j1} + 2 x_{i2} x_{j2}$$

$$= \begin{bmatrix} 1 & x_{i1}^2 & \sqrt{2} x_{i1} x_{i2} & x_{i2}^2 & \sqrt{2} x_{i1} & \sqrt{2} x_{i2} \end{bmatrix}^T$$

$$\begin{bmatrix} 1 & x_{j1}^2 & \sqrt{2} x_{j1} x_{j2} & x_{j2}^2 & \sqrt{2} x_{j1} & \sqrt{2} x_{j2} \end{bmatrix}$$

$$= \phi(x_i)^T \phi(x_j),$$

where $\phi(x) = \begin{bmatrix} 1 & x_1^2 & \sqrt{2} x_1 x_2 & x_2^2 & \sqrt{2} x_1 & \sqrt{2} x_2 \end{bmatrix}$

from Andrew Moore’s tutorial: http://www.autonlab.org/tutorials/svm.html
Nonlinear SVMs

- *The kernel trick*: instead of explicitly computing the lifting transformation $\varphi(x)$, define a kernel function K such that

$$K(x_i, x_j) = \varphi(x_i) \cdot \varphi(x_j)$$

- This gives a nonlinear decision boundary in the original feature space:

$$\sum_i \alpha_i y_i K(x_i, x) + b$$
Examples of kernel functions

- **Linear:**
 \[K(x_i, x_j) = x_i^T x_j \]

- **Gaussian RBF:**
 \[K(x_i, x_j) = \exp\left(-\frac{||x_i - x_j||^2}{2\sigma^2}\right) \]

- **Histogram intersection:**
 \[K(x_i, x_j) = \sum_k \min(x_i(k), x_j(k)) \]
SVMs for recognition

1. Define your representation for each example.

2. Select a kernel function.

3. Compute pairwise kernel values between labeled examples.

4. Use this “kernel matrix” to solve for SVM support vectors & weights.

5. To classify a new example: compute kernel values between new input and support vectors, apply weights, check sign of output.
Example: learning gender with SVMs

Moghaddam and Yang, Learning Gender with Support Faces, TPAMI 2002.

Moghaddam and Yang, Face & Gesture 2000.
Face alignment processing

- Multiscale Head Search
- Feature Search

Scale → Warp → Mask

Processed faces

Moghaddam and Yang, Learning Gender with Support Faces, TPAMI 2002.
Learning gender with SVMs

• Training examples:
 – 1044 males
 – 713 females

• Experiment with various kernels, select Gaussian RBF

\[K(x_i, x_j) = \exp\left(-\frac{\|x_i - x_j\|^2}{2\sigma^2}\right) \]
Support Faces

Moghaddam and Yang, Learning Gender with Support Faces, TPAMI 2002.
Classifier Performance

<table>
<thead>
<tr>
<th>Classifier</th>
<th>Error Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Overall</td>
</tr>
<tr>
<td>SVM with RBF kernel</td>
<td>3.38%</td>
</tr>
<tr>
<td>SVM with cubic polynomial kernel</td>
<td>4.88%</td>
</tr>
<tr>
<td>Large Ensemble of RBF</td>
<td>5.54%</td>
</tr>
<tr>
<td>Classical RBF</td>
<td>7.79%</td>
</tr>
<tr>
<td>Quadratic classifier</td>
<td>10.63%</td>
</tr>
<tr>
<td>Fisher linear discriminant</td>
<td>13.03%</td>
</tr>
<tr>
<td>Nearest neighbor</td>
<td>27.16%</td>
</tr>
<tr>
<td>Linear classifier</td>
<td>58.95%</td>
</tr>
</tbody>
</table>
Gender perception experiment: How well can humans do?

• Subjects:
 – 30 people (22 male, 8 female)
 – Ages mid-20’s to mid-40’s

• Test data:
 – 254 face images
 – Low res (6 males, 4 females)
 – High res versions

• Task:
 – Classify as male or female, forced choice
 – No time limit
Gender perception experiment: How well can humans do?

Stimuli

Results

<table>
<thead>
<tr>
<th></th>
<th>High-Res</th>
<th>Low-Res</th>
</tr>
</thead>
<tbody>
<tr>
<td>Error</td>
<td>6.54%</td>
<td>30.7%</td>
</tr>
</tbody>
</table>

$\sigma = 3.7\%$

Moghaddam and Yang, Face & Gesture 2000.
Human vs. Machine

- SVMs performed better than any single human test subject, at either resolution

Figure 6. SVM vs. Human performance
Hardest examples for humans

Top five human misclassifications

Moghaddam and Yang, Face & Gesture 2000.
Questions

• What if the features are not 2d?
• What if the data is not linearly separable?
• What if we have more than just two categories?
Multi-class SVMs

• Achieve multi-class classifier by combining a number of binary classifiers

• **One vs. all**
 – Training: learn an SVM for each class vs. the rest
 – Testing: apply each SVM to test example and assign to it the class of the SVM that returns the highest decision value

• **One vs. one**
 – Training: learn an SVM for each pair of classes
 – Testing: each learned SVM “votes” for a class to assign to the test example
SVMs: Pros and cons

• Pros
 • Many publicly available SVM packages:
 http://www.kernel-machines.org/software
 • http://www.csie.ntu.edu.tw/~cjlin/libsvm/
 • Kernel-based framework is very powerful, flexible
 • Often a sparse set of support vectors – compact at test time
 • Work very well in practice, even with very small training sample sizes

• Cons
 • No “direct” multi-class SVM, must combine two-class SVMs
 • Can be tricky to select best kernel function for a problem
 • Computation, memory
 – During training time, must compute matrix of kernel values for every pair of examples
 – Learning can take a very long time for large-scale problems

Adapted from Lana Lazebnik
Questions?

See you Thursday!