Outline

• Last time: window-based generic object detection
 – basic pipeline
 – face detection with boosting as case study

Generic category recognition: representation choice

Window-based

Part-based
Window-based models
Building an object model
• Consider edges, contours, and (oriented) intensity gradients

• Summarize local distribution of gradients with histogram
 ▪ Locally orderless: offers invariance to small shifts and rotations
 ▪ Contrast-normalization: try to correct for variable illumination

Given the representation, train a binary classifier

Car/non-car Classifier

Yes, car.

No, not a car.
Window-based models
Generating and scoring candidates

Kristen Grauman

Window-based object detection: recap
Training:
1. Obtain training data
2. Define features
3. Define classifier

Given new image:
1. Slide window
2. Score by classifier

Viola-Jones detector: summary
• A seminal approach to real-time object detection
• Training is slow, but detection is very fast
• Key ideas
 > Integral images for fast feature evaluation

P. Viola and M. Jones. Robust real-time face detection. IJCV 57(2), 2004.
Viola-Jones detector: summary

- A seminal approach to real-time object detection
- Training is slow, but detection is very fast
- Key ideas
 - Integral images for fast feature evaluation
 - Boosting for feature selection
 - Attentional cascade of classifiers for fast rejection of non-face windows

P. Viola and M. Jones. Robust real-time face detection. IJCV 57(2), 2004.

Boosting intuition
Boosting illustration

Final classifier is a combination of weak classifiers.

Discriminative classifier construction

- Nearest neighbor: Shaikhnarovich, Viola, Darrell 2003; Berg, Berg, Malik 2005...
- Support Vector Machines: Guyon, Vapnik, Heisele, Seme, Poggio, 2001,...
- Boosting: Viola, Jones 2001; Torralba et al. 2004; Opelt et al. 2006,...
- Conditional Random Fields: McCallum, Freitag, Pereira 2000; Kumar, Hebert 2003...
Outline

- **Last time:** window-based generic object detection
 - basic pipeline
 - face detection with boosting as case study
- **Today:** discriminative classifiers for image recognition
 - nearest neighbors (+ scene match app)
 - support vector machines (+ gender, person app)

Nearest Neighbor classification

- Assign label of nearest training data point to each test data point

![Voronoi partitioning of feature space for 2-category 2D data](image)

Novel test example Closest to a **positive** example from the training set, so classify it as positive.

K-Nearest Neighbors classification

- For a new point, find the k closest points from training data
- Labels of the k points "vote" to classify

![K-Nearest Neighbors classification diagram](image)

If query lands here, the 5 NN consist of 3 negatives and 2 positives, so we classify it as negative.
A nearest neighbor recognition example

Where in the World?

Where in the World?
Where in the World?

6+ million geotagged photos by 109,788 photographers
Annotated by Flickr users

6+ million geotagged photos by 109,788 photographers
Annotated by Flickr users
Which scene properties are relevant?

Spatial Envelope Theory of Scene Representation
Oliva & Torralba (2001)

A scene is a single surface that can be represented by global (statistical) descriptors

Global texture:
capturing the “Gist” of the scene

Capture global image properties while keeping some spatial information

Oliva & Torralba IJCV 2001, Torralba et al. CVPR 2003
Which scene properties are relevant?

- Gist scene descriptor
- Color Histograms - L*A*B* 4x14x14 histograms
- Texton Histograms – 512 entry, filter bank based
- Line Features – Histograms of straight line stats

Scene Matches
Scene Matches

Slides: James Hays
The Importance of Data

Feature Performance
Nearest neighbors: pros and cons

• **Pros:**
 – Simple to implement
 – Flexible to feature / distance choices
 – Naturally handles multi-class cases
 – Can do well in practice with enough representative data

• **Cons:**
 – Large search problem to find nearest neighbors
 – Storage of data
 – Must know we have a meaningful distance function

Outline

• Discriminative classifiers
 – Boosting (last time)
 – Nearest neighbors
 – Support vector machines

Linear classifiers
Lines in \mathbb{R}^2

Let $\begin{bmatrix} a \\ c \end{bmatrix} x = \begin{bmatrix} x \\ y \end{bmatrix}$

$$ax + cy + b = 0$$

Let $\begin{bmatrix} a \\ c \end{bmatrix} x = \begin{bmatrix} x \\ y \end{bmatrix}$

$$ax + cy + b = 0$$

$w \cdot x + b = 0$

Let $\begin{bmatrix} a \\ c \end{bmatrix} x = \begin{bmatrix} x \\ y \end{bmatrix}$

$$ax + cy + b = 0$$

$w \cdot x + b = 0$
Lines in R²

Let \(w = \begin{bmatrix} a \\ c \end{bmatrix} \) \(x = \begin{bmatrix} x \\ y \end{bmatrix} \)

\[ax + cy + b = 0 \]
\[w \cdot x + b = 0 \]

\[D = \frac{|ax_0 + cy_0 + b|}{\sqrt{a^2 + c^2}} \] distance from point to line

Linear classifiers

- Find linear function to separate positive and negative examples

\(x \), positive: \(x \cdot w + b \geq 0 \)

\(x \), negative: \(x \cdot w + b < 0 \)

Which line is best?
Support Vector Machines (SVMs)

- Discriminative classifier based on optimal separating line (for 2d case)
- Maximize the margin between the positive and negative training examples

Support vector machines

- Want line that maximizes the margin.

\[x, \text{positive}(y_i = 1): \quad x \cdot w + b \geq 1 \]
\[x, \text{negative}(y_i = -1): \quad x \cdot w + b \leq -1 \]

For support vectors, \(x \cdot w + b = \pm 1 \)

Distance between point and line:

\[\frac{|x \cdot w + b|}{\|w\|} \]

For support vectors:

\[\frac{x \cdot w + b}{\|w\|} = \pm 1 \]

\[M = \frac{1}{\|w\|} \]

Support vectors

Margin
Support vector machines

- Want line that maximizes the margin.

- Distance between point and line:
 \(\frac{||x - \mathbf{w} b||}{||\mathbf{w}||} \)

- Therefore, the margin is \(\frac{2}{||\mathbf{w}||} \)

Finding the maximum margin line

1. Maximize margin \(\frac{2}{||\mathbf{w}||} \)
2. Correctly classify all training data points:
 \(x, \text{positive} (y_i = 1): \quad x_i \cdot \mathbf{w} + b \geq 1 \)
 \(x, \text{negative} (y_i = -1): \quad x_i \cdot \mathbf{w} + b \leq -1 \)

Quadratic optimization problem:

\[
\text{Minimize } \frac{1}{2} \mathbf{w}^T \mathbf{w} \\
\text{Subject to } y_i (\mathbf{w} \cdot x_i + b) \geq 1
\]

Finding the maximum margin line

- Solution: \(\mathbf{w} = \sum \alpha_i y_i \mathbf{x}_i \)

- Support vector learned weight
Finding the maximum margin line

- Solution: \(w = \sum \alpha_i y_i x_i \)
 \(b = y_j - w \cdot x_j \) (for any support vector)
 \(w \cdot x + b = \sum \alpha_i y_i x_i \cdot x + b \)
- Classification function:
 \(f(x) = \text{sign}(w \cdot x + b) \)
 If \(f(x) < 0 \), classify as negative,
 if \(f(x) > 0 \), classify as positive

Questions

- What if the features are not 2d?
- What if the data is not linearly separable?
- What if we have more than just two categories?

Questions

- What if the features are not 2d?
 - Generalizes to d-dimensions – replace line with “hyperplane”
- What if the data is not linearly separable?
- What if we have more than just two categories?
Person detection with HoG’s & linear SVM’s

• Map each grid cell in the input window to a histogram counting the gradients per orientation.
• Train a linear SVM using training set of pedestrian vs. non-pedestrian windows.

Code available: http://pascal.inrialpes.fr/soft/olt/

Questions
• What if the features are not 2d?
• What if the data is not linearly separable?
• What if we have more than just two categories?
Non-linear SVMs

- Datasets that are linearly separable with some noise work out great:
- But what are we going to do if the dataset is just too hard?
- How about... mapping data to a higher-dimensional space:

Non-linear SVMs: feature spaces

- General idea: the original input space can be mapped to some higher-dimensional feature space where the training set is separable:

The “Kernel Trick”

- The linear classifier relies on dot product between vectors $K(x_i, x_j) = x_i^T x_j$
Finding the maximum margin line

- Solution: \(w = \sum \alpha_i y_i x_i \)
 \[b = y_j - w \cdot x_j \] (for any support vector)
 \[w \cdot x + b = \sum \alpha_i y_i x_i \cdot x + b \]

The “Kernel Trick”

- The linear classifier relies on dot product between vectors \(K(x_i,x_j) = x_i^T x_j \)

- If every data point is mapped into high-dimensional space via some transformation \(\Phi: x \rightarrow \phi(x) \), the dot product becomes:
 \[K(x_i,x_j) = \phi(x_i)^T \phi(x_j) \]

- A kernel function is a similarity function that corresponds to an inner product in some expanded feature space.

Example

2-dimensional vectors \(x = [x_1 \ x_2] \);
let \(K(x_i,x_j) = (1 + x_i^T x_j)^2 \)

Need to show that \(K(x_i,x_j) = \phi(x_i)^T \phi(x_j) \):
\[
K(x_i,x_j) = (1 + x_i^T x_j)^2, \\
= 1 + x_i^T x_j + 2x_i x_j x_{ij} + x_{ij}^2 x_{ij}^2 + 2x_i^T x_j + 2x_{ij} x_{ij} \\
= [1 \ x_i^2 \sqrt{2} x_i x_{ij} \ x_{ij}^2 \sqrt{2} x_{ij} \sqrt{2} x_{ij}^2 \sqrt{2} x_{ij}]^T, \\
[1 \ x_j^2 \sqrt{2} x_i x_{ij} \ x_{ij}^2 \sqrt{2} x_{ij} \sqrt{2} x_{ij}^2 \sqrt{2} x_{ij}] \\
= \phi(x_i)^T \phi(x_j),
\]

where \(\phi(x) = [1 \ x_j^2 \sqrt{2} x_i x_{ij} \ x_{ij}^2 \sqrt{2} x_{ij} \sqrt{2} x_{ij}^2 \sqrt{2} x_{ij}] \)
Nonlinear SVMs

- The kernel trick: instead of explicitly computing the lifting transformation $\varphi(x)$, define a kernel function K such that
 $$K(x_i, x_j) = \varphi(x_i) \cdot \varphi(x_j)$$

- This gives a nonlinear decision boundary in the original feature space:
 $$\sum_i \alpha_i y_i K(x_i, x) + b$$

Examples of kernel functions

- Linear:
 $$K(x_i, x_j) = x_i^T x_j$$

- Gaussian RBF:
 $$K(x_i, x_j) = \exp \left(\frac{-||x_i - x_j||^2}{2\sigma^2} \right)$$

- Histogram intersection:
 $$K(x_i, x_j) = \sum_k \min(x_i(k), x_j(k))$$

SVMs for recognition

1. Define your representation for each example.
2. Select a kernel function.
3. Compute pairwise kernel values between labeled examples.
4. Use this “kernel matrix” to solve for SVM support vectors & weights.
5. To classify a new example: compute kernel values between new input and support vectors, apply weights, check sign of output.
Example: learning gender with SVMs

Moghaddam and Yang, Learning Gender with Support Faces, TPAMI 2002.

Moghaddam and Yang, Face & Gesture 2000.

Learning gender with SVMs

- Training examples:
 - 1044 males
 - 713 females
- Experiment with various kernels, select Gaussian RBF

\[K(x_i, x_j) = \exp\left(-\frac{||x_i - x_j||^2}{2\sigma^2}\right) \]
Support Faces

Gender perception experiment: How well can humans do?

- Subjects:
 - 30 people (22 male, 8 female)
 - Ages mid-20’s to mid-40’s

- Test data:
 - 254 face images
 - Low res (6 males, 4 females)
 - High res versions

- Task:
 - Classify as male or female, forced choice
 - No time limit

Classifier Performance

<table>
<thead>
<tr>
<th>Classifier</th>
<th>Error Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Overall</td>
</tr>
<tr>
<td>SVM with RBF kernel</td>
<td>3.38%</td>
</tr>
<tr>
<td>SVM with cubic polynomial kernel</td>
<td>4.88%</td>
</tr>
<tr>
<td>Large ensemble of RBF</td>
<td>5.54%</td>
</tr>
<tr>
<td>Classical RBF</td>
<td>7.79%</td>
</tr>
<tr>
<td>Quadratic classifier</td>
<td>10.6%</td>
</tr>
<tr>
<td>Fisher linear discriminant</td>
<td>13.0%</td>
</tr>
<tr>
<td>Nearest neighbor</td>
<td>27.16%</td>
</tr>
<tr>
<td>Linear classifier</td>
<td>58.9%</td>
</tr>
</tbody>
</table>
Gender perception experiment: How well can humans do?

Stimuli →

Results →

Human vs. Machine

- SVMs performed better than any single human test subject, at either resolution

Hardest examples for humans

Top five human misclassifications
Questions

- What if the features are not 2d?
- What if the data is not linearly separable?
- What if we have more than just two categories?

Multi-class SVMs

- Achieve multi-class classifier by combining a number of binary classifiers

 - One vs. all
 - Training: learn an SVM for each class vs. the rest
 - Testing: apply each SVM to test example and assign to it the class of the SVM that returns the highest decision value

 - One vs. one
 - Training: learn an SVM for each pair of classes
 - Testing: each learned SVM “votes” for a class to assign to the test example

SVMs: Pros and cons

- Pros
 - Many publicly available SVM packages:
 - http://www.kernel-machines.org/software
 - http://www.csie.ntu.edu.tw/~cjlin/libsvm/
 - Kernel-based framework is very powerful, flexible
 - Often a sparse set of support vectors – compact at test time
 - Work very well in practice, even with very small training sample sizes

- Cons
 - No “direct” multi-class SVM, must combine two-class SVMs
 - Can be tricky to select best kernel function for a problem
 - Computation, memory
 - During training time, must compute matrix of kernel values for every pair of examples
 - Learning can take a very long time for large-scale problems
Questions?

See you Thursday!