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Motivation

• How can we scale to billions rather than millions of 
images? 

• Imagenet trained on ~1.2 million images 

• Unsupervised learning 

• Problem - What should be represented?



Inspiration - Context

• Similar words appear in similar contexts 

• Learn to relate a given word to its surrounding words 

• Context prediction becomes a ‘pretext’ task



A simple way to learn feature vectors for 
words (Collobert and Weston, 2008)
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units that learn to predict the output from features of the input 
words

right or random?
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Right or Random for Images?
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Right or Random for Images?
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Can you tell where B goes relative to A?
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Answer:
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Doing this requires recognizing semantics!

Answer:
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Unlabeled training image
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Unlabeled training image

Randomly Sample Patch
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Unlabeled training image

Randomly Sample Patch
Sample Second Patch
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Unlabeled training image

CNN CNN

Classifier

Train Deep Net to recover relative position
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CNN
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CNN

Patch Features
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CNN

Patch FeaturesInput Nearest Neighbors
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Architecture
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How to sample patches
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How to sample patches
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How to sample patches

Include a gap
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How to sample patches

Include a gap

Jitter the patch locations
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• Chromatic Aberration 
• Shift colors towards grey (Projection) 
• Drop 2 out of three channels during training

Another trivial shortcut

Slide from Carl Doersch



• Chromatic Aberration 
• Shift colors towards grey (Projection) 
• Drop 2 out of three channels during training

Another trivial shortcut

Slide from Carl Doersch



• Chromatic Aberration 
• Shift colors towards grey (Projection) 
• Drop 2 out of three channels during training

Another trivial shortcut

Slide from Carl Doersch



• Chromatic Aberration 
• Shift colors towards grey (Projection) 
• Drop 2 out of three channels during training

Another trivial shortcut

Slide from Carl Doersch



• Chromatic Aberration 
• Shift colors towards grey (Projection) 
• Drop 2 out of three channels during training

Another trivial shortcut

Slide from Carl Doersch



Ours

What is learned?

Input
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Ours

What is learned?

Input Random Initialization
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Ours

What is learned?

Input Random Initialization ImageNet AlexNet
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Still don’t capture everything
Input Ours Random Initialization ImageNet AlexNet
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Still don’t capture everything
Input Ours Random Initialization ImageNet AlexNet

You don’t always need to learn!
Input Ours Random Initialization ImageNet AlexNet
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Pre-Training for R-CNN
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Pre-Training for R-CNN

Pre-train on relative-position task, w/o labels
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Details

• Use stack from patch context 
predictor before pool5 

• Resize convolution layers to 
work on 227x227 instead of 
96x96 

• Use FC7 as the final 
representation
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VOC 2007 Performance  
(pretraining for R-CNN)
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Unsupervised Object Discovery?
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Algorithm
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Purity vs Coverage



Pretext Task

• Performance on Pascal VOC is 38.4% (Chance is 
12.5%) 

• On ImageNet accuracy is 39.5% on training set, 
and 40.5% on validation  

• On GT box patches  - similar performance. 39.2% 
overall with 45.6% on cars



Questions?


