Learning a Recurrent Visual Representation for Image Caption Generation

Xinlei Chen and C. Lawrence Zitnick
Presented by Yu-Cheng Lin
CVPR 2015

Most slides from Xinlei Chen
From Labels to Texts

- Airplane
- Runway

From PASCAL VOC Challenge
TIME FOR HALLUCINATION!
A girl
A girl sits
A girl sits on a tire swing
A girl sits on a tire swing with a dog.
Can my computer learn something like that?

“A girl”
Model the sequence: memory

“A girl sits”
A simple model that memorizes ...
Un-roll in Time: Recurrent
Predicting the next

- Recurrent Neural Network based Language Model (RNNLM) [Mikolov et.al. 2010]
Now, back to our task

• Learn a model between images and sentences, so that:
 – Given an image, it can retrieve/\textit{generate} a description
 – Given a description, it can retrieve/\textit{hallucinate} an image
Generating Image Descriptions

• EASY, Objective Function: $\Pi t \left[P(w \downarrow t | I, H \downarrow t) \right]$
Provide more supervision!
Solution: Split into 2!

Memorizes the semantics of the entire image

But no information flow from \(s \) to \(i \)!

Memorizes the visualizable parts of the sentence so far
Our Model (Per Stage)

\[\Pi_{t} \left[P(w_{t}, I | H_{t}) \right] \]
Visual memory

Semantic memory

\[\prod_t [P(w_t | I, H^t)] \]
Image generation

\[\Pi\downarrow t [P(I|H\downarrow t)] \]

Visual memory

Semantic memory

A girl sits
Summary: Objective Function

- **Language:**

 \[\pi_t[P(w_t|I,H_t)] \]

- **Image:**

 \[\pi_t[P(I|H_t)] \]

- **Together:**

 \[\pi_t[P(I,w_t|H_t)] \]
How does it work?

• Test-bed: Clip-art Dataset

 • Jenny is catching the ball;
 • Mike is kicking the ball;
 • The table is next to the tree.

– Sentence (Vertical): concatenation of the 3 simple sentences

– Image (Horizontal): 82 binary variable indicating whether the clip-art/attribute occurs
Image Feature Generation (Baseball)
Real images: plug and play

- **Datasets**
 - PASCAL
 - Flickr 8K/30K
 - MS COCO

- **Image Representation**
 - Whole frame 4096D CNN features

- **Text Preprocessing**
 - Tokenization by Stanford CoreNLP
 - Lowercase all letters
Sentence Generation

• Procedure
 – Sample sentence length, n
 – Using language model, sample 100 sentences of length n
 – Select sentence with best likelihood

Length Distribution on COCO
Qualitative Results

PC: A plate with a bowl of soup and a cup of coffee on a table.

GT: A cup of coffee and a sandwich on a plate.
Qualitative Results

PC: An old brick building with a clock on top of it.

GT: A black and tan clock on a brown brick building.
Qualitative Results

PC: A cat sitting on top of a bed with a laptop.

GT: A dog on top of a person so you cannot see the person.
Qualitative Results

PC: A bunch of stuffed animals sitting next to each other.

GT: An overhead view of a city cross walk on a rainy day features an array of colorful umbrellas.
Qualitative Results

PC: A laptop computer sitting on top of a desk with a laptop.

GT: An open laptop computer sitting on top of a white table.
Quantitative

<table>
<thead>
<tr>
<th></th>
<th>Flickr 8K</th>
<th></th>
<th>Flickr 30K</th>
<th></th>
<th>MS COCO Val</th>
<th></th>
<th>MS COCO Test</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PPL</td>
<td>BLEU</td>
<td>METEOR</td>
<td>PPL</td>
<td>BLEU</td>
<td>METEOR</td>
<td>PPL</td>
<td>BLEU</td>
</tr>
<tr>
<td>RNN</td>
<td>17.5</td>
<td>4.5</td>
<td>10.3</td>
<td>23.0</td>
<td>6.3</td>
<td>10.7</td>
<td>16.9</td>
<td>4.7</td>
</tr>
<tr>
<td>RNN+IF</td>
<td>16.5</td>
<td>11.9</td>
<td>16.2</td>
<td>20.8</td>
<td>11.3</td>
<td>14.3</td>
<td>13.3</td>
<td>16.3</td>
</tr>
<tr>
<td>RNN+IF+FT</td>
<td>16.0</td>
<td>12.0</td>
<td>16.3</td>
<td>20.5</td>
<td>11.6</td>
<td>14.6</td>
<td>12.9</td>
<td>17.0</td>
</tr>
<tr>
<td>RNN+VGG</td>
<td>15.2</td>
<td>12.4</td>
<td>16.7</td>
<td>20.0</td>
<td>11.9</td>
<td>15.0</td>
<td>12.6</td>
<td>18.4</td>
</tr>
<tr>
<td>Our Approach</td>
<td>16.1</td>
<td>12.2</td>
<td>16.6</td>
<td>20.0</td>
<td>11.3</td>
<td>14.6</td>
<td>12.6</td>
<td>16.3</td>
</tr>
<tr>
<td>Our Approach+FT</td>
<td>15.8</td>
<td>12.4</td>
<td>16.7</td>
<td>19.5</td>
<td>11.6</td>
<td>14.7</td>
<td>12.0</td>
<td>16.8</td>
</tr>
<tr>
<td>Our Approach+VGG</td>
<td>15.1</td>
<td>13.1</td>
<td>16.9</td>
<td>19.1</td>
<td>12.0</td>
<td>15.2</td>
<td>11.6</td>
<td>18.8</td>
</tr>
<tr>
<td>Human</td>
<td>-</td>
<td>20.6</td>
<td>25.5</td>
<td>-</td>
<td>18.9</td>
<td>22.9</td>
<td>-</td>
<td>19.2</td>
</tr>
</tbody>
</table>
Conclusions

• CNN makes things work
• Language Models are nice to explore for language generation
• Try to reconstruct the image is helpful
Future Work

• Capture more details (better feature localization)
• Replace RNN with LSTM
THANKS! QUESTIONS?