CNN Basics

Chongruo Wu
1. **Forward**: compute the output of each layer
2. **Back propagation**: compute gradient
3. **Updating**: update the parameters with computed gradient
Agenda

1. Forward
 Conv, Fully Connected, Pooling, Non-linear Function
 Loss functions

2. Back Propagation, Computing Gradient
 Chain rule

3. Updating Parameters
 SGD

4. Training
Agenda

1. **Forward**
 - Conv, Fully Connected, Pooling, non-linear Function
 - Loss functions

2. **Backward, Computing Gradient**
 - Chain rule

3. **Updating Parameters**
 - SGD

4. **Training**
Partial derivatives of an image

\[\frac{\partial f(x, y)}{\partial x} \]

\[\frac{\partial f(x, y)}{\partial y} \]

Which shows changes with respect to \(x \)?

Slide credit: Kristen Grauman
Before Deep Learning

Prewitt: $M_x = \begin{bmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{bmatrix}$; $M_y = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ -1 & -1 & -1 \end{bmatrix}$

Sobel: $M_x = \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix}$; $M_y = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{bmatrix}$

Roberts: $M_x = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$; $M_y = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$

$\gg My = \text{fspecial}('sobel');$
$\gg outim = \text{imfilter(double(im)}, My);$
$\gg \text{imagesc}(outim);$
$\gg \text{colormap} \text{ gray};$
Convolution (One Channel)
Convolution, One Channel

- Kernels are learned.
- Here we show the forward process
- After each iteration, parameters of kernels are changed.

Gif Animation, https://goo.gl/2L2KdP
Convolution, Padding

Gif Animation, https://goo.gl/Rm38CJ

Pad = 1

output size = input size
Convolution, Stride

Gif Animation, https://goo.gl/Rm38CJ

Stride > 1
Dilated Convolution

Gif Animation, https://goo.gl/Rm38CJ

Dilated Stride > 1
Convolution (Multiple Channels)
Convolution, Multiple Channels

Representation for Feature Map:

(batch, channels, height, width)

For input image

(batch, 3, height, width)

R, G, B
Convolution Layer

32x32x3 image

height

width

depth

Andrej Karpathy, Bay Area Deep Learning School, 2016
Convolution Layer

32x32x3 image

5x5x3 filter

Convolve the filter with the image i.e. “slide over the image spatially, computing dot products”
Convolution Layer

32x32x3 image

5x5x3 filter

Filters always extend the full depth of the input volume

Convolve the filter with the image i.e. “slide over the image spatially, computing dot products”
Convoluition Layer

32x32x3 image
5x5x3 filter w

1 number:
the result of taking a dot product between the filter and a small 5x5x3 chunk of the image (i.e. $5 \times 5 \times 3 = 75$-dimensional dot product + bias)

$$w^T x + b$$
Convolution Layer

32x32x3 image
5x5x3 filter

convolve (slide) over all spatial locations

activation map
Consider a second, green filter.

Convolution Layer

32x32x3 image
5x5x3 filter

Convolve (slide) over all spatial locations

Activation maps
For example, if we had 6 5x5 filters, we’ll get 6 separate activation maps:

We stack these up to get a “new image” of size 28x28x6!

In pytorch, `conv2 = nn.Conv2d(3, 6, kernel_size=5)`
For example, if we had 6 5x5 filters, we’ll get 6 separate activation maps:

We processed [32x32x3] volume into [28x28x6] volume.

Q: how many parameters would this be if we used a fully connected layer instead?
For example, if we had 6 5x5 filters, we’ll get 6 separate activation maps:

We processed $[32 \times 32 \times 3]$ volume into $[28 \times 28 \times 6]$ volume.

Q: how many parameters would this be if we used a fully connected layer instead?
A: $(32 \times 32 \times 3) \times (28 \times 28 \times 6) = 14.5$M parameters, ~ 14.5M multiplies

Andrej Karpathy, Bay Area Deep Learning School, 2016
For example, if we had 6 5x5 filters, we’ll get 6 separate activation maps:

We processed [32x32x3] volume into [28x28x6] volume.

Q: how many parameters are used instead?
For example, if we had 6 5x5 filters, we’ll get 6 separate activation maps:

We processed [32x32x3] volume into [28x28x6] volume.

Q: how many parameters are used instead?
A: \((5\times5\times3)\times6 = 450\) parameters, \((5\times5\times3)\times(28\times28\times6) = \sim350K\) multiplies
Convolution, Extended Work

Depthwise Convolution

- Model compression

Figure 2. The standard convolutional filters in (a) are replaced by two layers: depthwise convolution in (b) and pointwise convolution in (c) to build a depthwise separable filter.
Convolution, Extended Work

MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications

Figure 2. The standard convolutional filters in (a) are replaced by two layers: depthwise convolution in (b) and pointwise convolution in (c) to build a depthwise separable filter.
Convolution, Extended Work

Deformable Convolution

Figure 2: Illustration of 3×3 deformable convolution.

Deformable Convolutional Networks
Convolution, Extended Work

Deformable Convolution

(a) standard convolution (b) deformable convolution
Non-Linear Function
Non-Linear Function

Conv -> ReLU -> Conv

Why we need Non-Linearity Function?

- Conv, linear operation
- Two consecutive convolutional layers (no ReLU) are considered as one convolutional layer.
Extended Work, PReLU

Parametric Rectified Linear Unit (PReLU)

![Graph comparing ReLU and PReLU](image)

Figure 1. ReLU vs. PReLU. For PReLU, the coefficient of the negative part is not constant and is adaptively learned.

Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification
Preview: ConvNet is a sequence of Convolution Layers, interspersed with activation functions.

CONV, ReLU

e.g. 6 5x5x3 filters
Preview: ConvNet is a sequence of Convolutional Layers, interspersed with activation functions.

- **32**
- **CONV, ReLU**
 - e.g. 6
 - 5x5x3 filters
- **28**
- **CONV, ReLU**
 - e.g. 10
 - 5x5x6 filters
- **24**
- **CONV, ReLU**
 -

Andrej Karpathy, Bay Area Deep Learning School, 2016
Pooling
MAX POOLING

Single depth slice

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

max pool with 2x2 filters and stride 2

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>
Pooling layer

- makes the representations smaller and more manageable
- operates over each activation map independently:
Pooling

- Max pooling
- Average pooling
Fully Connected Layer
Fully Connected Layer

Representation for Feature Map:

\[(\text{batch, channels, height, width})\]

Fully Connected Layer:

\[(\text{batch, channels, 1, 1})\]

or

\[(\text{batch, channels})\]

#parameters: \(\text{input_channel} \times \text{output_channel}\)

Stanford cs231n.
Fully Connected Layer

Usually we apply reshape operation for input feature map

\[(n, c, h, w) \rightarrow (n, c \cdot h \cdot w, 1, 1)\]

or \[(n, c \cdot h \cdot w)\]

#parameters: input_channel * output_channel
Convolutional Vs. Fully Connected Layer

Convolutional Layer

- Local information
- Kernels are shared

Fully Connected Layer

- Global information
- #parameters large
Agenda

1. Forward
 Conv, Fully Connected, Pooling, non-linear Function
 Loss functions

2. Back Propagation, Computing Gradient
 Chain rule

3. Updating Parameters
 SGD

4. Training
1. **Forward**: compute output of each layer
2. **Back propagation**: compute gradient
3. **Updating**: update the parameters with computed gradient
Loss Functions

- Softmax
- Regression
- Contrastive/Triplet Loss
Softmax Classifier *(Multinomial Logistic Regression)*

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>cat</td>
<td>3.2</td>
</tr>
<tr>
<td>car</td>
<td>5.1</td>
</tr>
<tr>
<td>frog</td>
<td>-1.7</td>
</tr>
</tbody>
</table>
Case Study: AlexNet

[Krizhevsky et al. 2012]

Full (simplified) AlexNet architecture:

[227x227x3] INPUT

[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0

[27x27x96] MAX POOL1: 3x3 filters at stride 2

[27x27x96] NORM1: Normalization layer

[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2

[13x13x256] MAX POOL2: 3x3 filters at stride 2

[13x13x256] NORM2: Normalization layer

[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1

[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1

[13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1

[6x6x256] MAX POOL3: 3x3 filters at stride 2

[4096] FC6: 4096 neurons

[4096] FC7: 4096 neurons

[1000] FC8: 1000 neurons (class scores)
Softmax Classifier (Multinomial Logistic Regression)

scores = unnormalized log probabilities of the classes.

\[s = f(x_i; W) \]

- cat: 3.2
- car: 5.1
- frog: -1.7
Softmax Classifier (Multinomial Logistic Regression)

scores = unnormalized log probabilities of the classes.

$$P(Y = k | X = x_i) = \frac{e^{s_k}}{\sum_j e^{s_j}}$$

where

$$s = f(x_i; W)$$

- cat: 3.2
- car: 5.1
- frog: -1.7
Softmax Classifier (Multinomial Logistic Regression)

scores = unnormalized log probabilities of the classes.

\[P(Y = k | X = x_i) = \frac{e^{s_k}}{\sum_j e^{s_j}} \]

where

\[s = f(x_i; W) \]

<table>
<thead>
<tr>
<th>Class</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>cat</td>
<td>3.2</td>
</tr>
<tr>
<td>car</td>
<td>5.1</td>
</tr>
<tr>
<td>frog</td>
<td>-1.7</td>
</tr>
</tbody>
</table>

Softmax function
Softmax Classifier (Multinomial Logistic Regression)

scores = unnormalized log probabilities of the classes.

\[
P(Y = k | X = x_i) = \frac{e^{s_k}}{\sum_j e^{s_j}}
\]

where \(s = f(x_i; W)\)

Want to maximize the log likelihood, or (for a loss function) to minimize the negative log likelihood of the correct class:

\[
L_i = -\log P(Y = y_i | X = x_i)
\]

\begin{align*}
\text{cat} & \quad 3.2 \\
\text{car} & \quad 5.1 \\
\text{frog} & \quad -1.7
\end{align*}

\(y_i\) is the groundtruth
Softmax Classifier (Multinomial Logistic Regression)

scores = unnormalized log probabilities of the classes.

\[P(Y = k | X = x_i) = \frac{e^{s_k}}{\sum_j e^{s_j}} \]

where \(s = f(x_i; W) \)

Want to maximize the log likelihood, or (for a loss function) to minimize the negative log likelihood of the correct class:

\[L_i = -\log P(Y = y_i | X = x_i) \]

in summary: \[L_i = -\log \left(\frac{e^{s_y_i}}{\sum_j e^{s_j}} \right) \]

\(y_i \) is the groundtruth
Softmax Classifier (Multinomial Logistic Regression)

\[L_i = -\log \left(\frac{e^{s_{y_i}}}{\sum_j e^{s_j}} \right) \]

unnormalized probabilities

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>cat</td>
<td>3.2</td>
<td>24.5</td>
</tr>
<tr>
<td>car</td>
<td>5.1</td>
<td>164.0</td>
</tr>
<tr>
<td>frog</td>
<td>-1.7</td>
<td>0.18</td>
</tr>
</tbody>
</table>

unnormalized log probabilities
Softmax Classifier (Multinomial Logistic Regression)

\[L_i = -\log\left(\frac{e^{s_{y_i}}}{\sum_j e^{s_j}} \right) \]

- **Groundtruth** (one hot vector)
 - cat: [1, 0, 0]
 - car: [0, 1, 0]
 - frog: [0, 0, 1]

Unnormalized probabilities:
- cat: 3.2
- car: 5.1
- frog: -1.7

Unnormalized log probabilities:
- cat: 24.5
- car: 164.0
- frog: 0.18

Normalized probabilities:
- cat: 0.13
- car: 0.87
- frog: 0.00
Softmax Classifier (Multinomial Logistic Regression)

\[L_i = -\log\left(\frac{e^{y_i}}{\sum_j e^{s_j}} \right) \]

<table>
<thead>
<tr>
<th></th>
<th>Unnormalized Probabilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>cat</td>
<td>3.2</td>
</tr>
<tr>
<td>car</td>
<td>5.1</td>
</tr>
<tr>
<td>frog</td>
<td>-1.7</td>
</tr>
</tbody>
</table>

\[\exp(\text{unnormalized log probabilities}) \]

<table>
<thead>
<tr>
<th></th>
<th>Probabilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>cat</td>
<td>0.13</td>
</tr>
<tr>
<td>car</td>
<td>0.87</td>
</tr>
<tr>
<td>frog</td>
<td>0.00</td>
</tr>
</tbody>
</table>

\[L_i = -\log(0.13) = 0.89 \]

Groundtruth (one hot vector): [1, 0, 0]

Stanford cs231n.
Softmax Classifier (Multinomial Logistic Regression)

\[L_i = -\log\left(\frac{e^{s_{y_i}}}{\sum_j e^{s_j}}\right) \]

Q: What is the min/max possible loss \(L_i \)?

Unnormalized probabilities:
- cat: 3.2
- car: 5.1
- frog: -1.7

Unnormalized log probabilities:
- cat: 24.5
- car: 164.0
- frog: 0.18

Probabilities:
- cat: 0.13
- car: 0.87
- frog: 0.00

\[L_i = -\log(0.13) = 0.89 \]
Softmax Classifier *(Multinomial Logistic Regression)*

\[L_i = -\log\left(\frac{e^{s y_i}}{\sum_j e^{s_j}} \right) \]

Q2: Usually at initialization \(W \) is small so all \(s \approx 0 \). What is the loss?

<table>
<thead>
<tr>
<th>cat</th>
<th>3.2</th>
<th>exp</th>
<th>24.5</th>
<th>normalize</th>
<th>0.13</th>
<th>(-\log(0.13)) = 0.89</th>
</tr>
</thead>
<tbody>
<tr>
<td>car</td>
<td>5.1</td>
<td></td>
<td>164.0</td>
<td></td>
<td>0.87</td>
<td></td>
</tr>
<tr>
<td>frog</td>
<td>-1.7</td>
<td></td>
<td>0.18</td>
<td></td>
<td>0.00</td>
<td></td>
</tr>
</tbody>
</table>

unnormalized probabilities

unnormalized log probabilities

probabilities

Stanford cs231n.
Loss Functions

- Softmax
- Regression
 - Bounding box regression
- Contrastive/Triplelet Loss
 - Object(face) recognition, clustering
two more layers to go: POOL/FC
```python
class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
        self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
        self.conv2_drop = nn.Dropout2d()
        self.fc1 = nn.Linear(320, 50)
        self.fc2 = nn.Linear(50, 10)

    def forward(self, x):
        x = F.relu(F.max_pool2d(self.conv1(x), 2))
        x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))
        x = x.view(-1, 320)
        x = F.relu(self.fc1(x))
        x = F.dropout(x, training=self.training)
        x = self.fc2(x)
        return F.log_softmax(x)

model = Net()
if args.cuda:
    model.cuda()
```

Define Network

https://goo.gl/mQEw15
Network Case Study (optional)
Case Study: AlexNet

[Krizhevsky et al. 2012]

Input: 227x227x3 images

First layer (CONV1): 96 11x11 filters applied at stride 4

=>

Q: what is the output volume size? Hint: \((227 - 11) / 4 + 1 = 55\)
Case Study: AlexNet

[Krizhevsky et al. 2012]

Full (simplified) AlexNet architecture:

[227x227x3] INPUT

[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0
[27x27x96] MAX POOL1: 3x3 filters at stride 2
[27x27x96] NORM1: Normalization layer
[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2
[13x13x256] MAX POOL2: 3x3 filters at stride 2
[13x13x256] NORM2: Normalization layer
[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1
[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1
[13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1
[6x6x256] MAX POOL3: 3x3 filters at stride 2
[4096] FC6: 4096 neurons
[4096] FC7: 4096 neurons
[1000] FC8: 1000 neurons (class scores)
VGG Network

INPUT: [224x224x3] memory: 224*224*3=150K params: 0 (not counting biases)

CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*64)*64 = 1,728

CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*64)*64 = 36,864

POOL2: [112x112x64] memory: 112*112*64=800K params: 0

CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*64)*128 = 73,728

CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*128)*128 = 147,456

POOL2: [56x56x128] memory: 56*56*128=400K params: 0

CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*128)*256 = 294,912

CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824

CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824

POOL2: [28x28x256] memory: 28*28*256=200K params: 0

CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*256)*512 = 1,179,648

CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296

CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296

POOL2: [14x14x512] memory: 14*14*512=100K params: 0

CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296

CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296

CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296

POOL2: [7x7x512] memory: 7*7*512=25K params: 0

FC: [1x1x4096] memory: 4096 params: 7*7*512*4096 = 102,760,448

FC: [1x1x4096] memory: 4096 params: 4096*4096 = 16,777,216

FC: [1x1x1000] memory: 1000 params: 4096*1000 = 4,096,000

TOTAL memory: 24M * 4 bytes ~= 93MB / image (only forward! ~=2 for bwd)

TOTAL params: 138M parameters
VGG Network

<table>
<thead>
<tr>
<th>Layer Type</th>
<th>Input Shape</th>
<th>Memory</th>
<th>Params</th>
</tr>
</thead>
<tbody>
<tr>
<td>INPUT: [224x224x3]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CONV3-64: [224x224x64]</td>
<td>2242243=150K</td>
<td>params: 0</td>
<td></td>
</tr>
<tr>
<td>CONV3-64: [224x224x64]</td>
<td>22422464=3.2M</td>
<td>(not counting biases)</td>
<td></td>
</tr>
<tr>
<td>CONV3-128: [112x112x128]</td>
<td>112112128=1.6M</td>
<td>params: (3364)*128 = 73,728</td>
<td></td>
</tr>
<tr>
<td>CONV3-128: [112x112x128]</td>
<td>112112128=1.6M</td>
<td>params: (33128)*128 = 147,456</td>
<td></td>
</tr>
<tr>
<td>POOL2: [56x56x128]</td>
<td>5656128=400K</td>
<td>params: 0</td>
<td></td>
</tr>
<tr>
<td>CONV3-256: [56x56x256]</td>
<td>5656256=800K</td>
<td>params: (33128)*256 = 294,912</td>
<td></td>
</tr>
<tr>
<td>CONV3-256: [56x56x256]</td>
<td>5656256=800K</td>
<td>params: (33256)*256 = 589,824</td>
<td></td>
</tr>
<tr>
<td>CONV3-256: [56x56x256]</td>
<td>5656256=800K</td>
<td>params: (33256)*256 = 589,824</td>
<td></td>
</tr>
<tr>
<td>POOL2: [28x28x256]</td>
<td>2828256=200K</td>
<td>params: 0</td>
<td></td>
</tr>
<tr>
<td>CONV3-512: [28x28x512]</td>
<td>2828512=400K</td>
<td>params: (33256)*512 = 1,179,648</td>
<td></td>
</tr>
<tr>
<td>CONV3-512: [28x28x512]</td>
<td>2828512=400K</td>
<td>params: (33512)*512 = 2,359,296</td>
<td></td>
</tr>
<tr>
<td>CONV3-512: [28x28x512]</td>
<td>2828512=400K</td>
<td>params: (33512)*512 = 2,359,296</td>
<td></td>
</tr>
<tr>
<td>POOL2: [14x14x512]</td>
<td>1414512=100K</td>
<td>params: 0</td>
<td></td>
</tr>
<tr>
<td>CONV3-512: [14x14x512]</td>
<td>1414512=100K</td>
<td>params: (33512)*512 = 2,359,296</td>
<td></td>
</tr>
<tr>
<td>CONV3-512: [14x14x512]</td>
<td>1414512=100K</td>
<td>params: (33512)*512 = 2,359,296</td>
<td></td>
</tr>
<tr>
<td>CONV3-512: [14x14x512]</td>
<td>1414512=100K</td>
<td>params: (33512)*512 = 2,359,296</td>
<td></td>
</tr>
<tr>
<td>POOL2: [7x7x512]</td>
<td>77512=25K</td>
<td>params: 0</td>
<td></td>
</tr>
<tr>
<td>FC: [1x1x4096]</td>
<td>4096</td>
<td>params: 77512*4096 = 102,760,448</td>
<td></td>
</tr>
<tr>
<td>FC: [1x1x4096]</td>
<td>4096</td>
<td>params: 1000 * 4096 = 4,096,000</td>
<td></td>
</tr>
</tbody>
</table>

TOTAL memory: 24M * 4 bytes = 93MB / image (only forward! ~*2 for bwd)
TOTAL params: 138M parameters

Note:
Most memory is in early CONV
Most params are in late FC
Agenda

1. Forward
 Conv, Fully Connected, Pooling, non-linear Function
 Loss functions

2. Back Propagation, Computing Gradient
 Chain rule

3. Updating Parameters
 SGD

4. Training
Overview

1. **Forward**: compute output of each layer
2. **Backward**: compute gradient
3. **Update**: update the parameters with computed gradient
Back Propagation

Parameters:
- Convolutional Layer, Fully Connected Layer
- PReLU, Batch Normalization

No Parameters:
- Pooling, ReLU, Dropout
Backpropagation: a simple example

\[f(x, y, z) = (x + y)z \]

e.g. \(x = -2, y = 5, z = -4 \)
Backpropagation: a simple example

\[f(x, y, z) = (x + y)z \]

\[\text{e.g. } x = -2, \ y = 5, \ z = -4 \]

\[
\begin{align*}
q &= x + y & \frac{\partial q}{\partial x} &= 1, \ & \frac{\partial q}{\partial y} &= 1 \\
\end{align*}
\]

\[
\begin{align*}
f &= qz & \frac{\partial f}{\partial q} &= z, \ & \frac{\partial f}{\partial z} &= q \\
\end{align*}
\]

Want: \[\frac{\partial f}{\partial x}, \ \frac{\partial f}{\partial y}, \ \frac{\partial f}{\partial z} \]
Backpropagation: a simple example

\[f(x, y, z) = (x + y)z \]

e.g. \(x = -2, y = 5, z = -4 \)

\[q = x + y \quad \frac{\partial q}{\partial x} = 1, \quad \frac{\partial q}{\partial y} = 1 \]

\[f = qz \quad \frac{\partial f}{\partial q} = z, \quad \frac{\partial f}{\partial z} = q \]

Want: \(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z} \)
Backpropagation: a simple example

\[f(x, y, z) = (x + y)z \]

e.g. \(x = -2, y = 5, z = -4 \)

\[q = x + y \quad \frac{\partial q}{\partial x} = 1, \quad \frac{\partial q}{\partial y} = 1 \]

\[f = qz \quad \frac{\partial f}{\partial q} = z, \quad \frac{\partial f}{\partial z} = q \]

Want: \(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z} \)
Backpropagation: a simple example

\[f(x, y, z) = (x + y)z \]

e.g. \(x = -2, y = 5, z = -4 \)

\[q = x + y \quad \frac{\partial q}{\partial x} = 1, \quad \frac{\partial q}{\partial y} = 1 \]

\[f = qz \quad \frac{\partial f}{\partial q} = z, \quad \frac{\partial f}{\partial z} = q \]

Want: \(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z} \)
Backpropagation: a simple example

\[f(x, y, z) = (x + y)z \]

e.g. \(x = -2, y = 5, z = -4 \)

\[q = x + y \quad \frac{\partial q}{\partial x} = 1, \quad \frac{\partial q}{\partial y} = 1 \]

\[f = qz \quad \frac{\partial f}{\partial q} = z, \quad \frac{\partial f}{\partial z} = q \]

Want: \(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z} \)
Backpropagation: a simple example

\[f(x, y, z) = (x + y)z \]

e.g. \(x = -2, \ y = 5, \ z = -4 \)

\[q = x + y \quad \frac{\partial q}{\partial x} = 1, \ \frac{\partial q}{\partial y} = 1 \]

\[f = qz \quad \frac{\partial f}{\partial q} = z, \ \frac{\partial f}{\partial z} = q \]

Want: \(\frac{\partial f}{\partial x}, \ \frac{\partial f}{\partial y}, \ \frac{\partial f}{\partial z} \)
Backpropagation: a simple example

\[f(x, y, z) = (x + y)z \]

\[\text{e.g. } x = -2, \ y = 5, \ z = -4 \]

\[q = x + y, \ \frac{\partial q}{\partial x} = 1, \ \frac{\partial q}{\partial y} = 1 \]

\[f = qz, \ \frac{\partial f}{\partial q} = z, \ \frac{\partial f}{\partial z} = q \]

Want: \[\frac{\partial f}{\partial x}, \ \frac{\partial f}{\partial y}, \ \frac{\partial f}{\partial z} \]

Chain rule:

\[\frac{\partial f}{\partial y} = \frac{\partial f}{\partial q} \frac{\partial q}{\partial y} \]
Backpropagation: a simple example

\[f(x, y, z) = (x + y)z \]

e.g. \(x = -2, y = 5, z = -4 \)

\[q = x + y \quad \frac{\partial q}{\partial x} = 1, \quad \frac{\partial q}{\partial y} = 1 \]

\[f = qz \quad \frac{\partial f}{\partial q} = z, \quad \frac{\partial f}{\partial z} = q \]

Want: \(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z} \)

Chain rule:

\[\frac{\partial f}{\partial x} = \frac{\partial f}{\partial q} \frac{\partial q}{\partial x} \]
Stanford cs231n.
Back Propagation

Convolutional Layer

Fully Connected Layer

32x32x3 image -> stretch to 3072 x 1

Wx

10 x 3072 weights

activation

1 number: the result of taking a dot product between a row of W and the input (a 3072-dimensional dot product)
Once you finish your computation you can call `.backward()` and have all the gradients computed automatically. “
Agenda

1. Forward
 Conv, Fully Connected, Pooling, non-linear Function
 Loss functions

2. Backward, Computing Gradient
 Chain rule

3. Updating Parameters
 SGD

4. Training
Overview

1. **Forward**: compute output of each layer
2. **Backward**: compute gradient
3. **Update**: update the parameters with computed gradient
Updating Gradient

Vanilla update. The simplest form of update is to change the parameters along the negative gradient direction (since the gradient indicates the direction of increase, but we usually wish to minimize a loss function). Assuming a vector of parameters \mathbf{x} and the gradient \mathbf{dx}, the simplest update has the form:

```python
# Vanilla update
x += -learning_rate * dx
```
Updating Gradient

$$\theta_1 := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_1)$$

If α is too small, gradient descent can be slow.

If α is too large, gradient descent can overshoot the minimum. It may fail to converge, or even diverge.
Updating Gradient

decrease the learning rate after several epochs
Optimization: Problems with SGD

What if loss changes quickly in one direction and slowly in another?
What does gradient descent do?
Very slow progress along shallow dimension, jitter along steep direction

Loss function has high condition number: ratio of largest to smallest singular value of the Hessian matrix is large
Updating Gradient

```
# Vanilla update
x += -learning_rate * dx
```

```
# Momentum update
v = mu * v - learning_rate * dx  # integrate velocity
x += v  # integrate position
```

Momentum

Stanford cs231n.
SGD + Momentum

Local Minima

Saddle points

Poor Conditioning

Gradient Noise
Other updating Strategies

- SGD
- Momentum
- Rmsprop
- Adagrad
- Adam

Animations that may help your intuitions about the learning process dynamics. Left: Contours of a loss surface and time evolution of different optimization algorithms. Notice the “overshooting” behavior of momentum-based methods, which make the optimization look like a ball rolling down the hill. Right: A visualization of a saddle point in the optimization landscape, where the curvature along different dimension has different signs (one dimension curves up and another down). Notice that SGD has a very hard time breaking symmetry and gets stuck on the top. Conversely, algorithms such as RMSprop will see very low gradients in the saddle direction. Due to the denominator term in the RMSprop update, this will increase the effective learning rate along this direction, helping RMSProp proceed. Images credit: Alec Radford.

1. **Forward**: compute output of each layer
2. **Backward**: compute gradient
3. **Update**: update the parameters with computed gradient
Agenda

1. **Forward**
 - Conv, Fully Connected, Pooing, non-linear Function
 - Loss functions

2. **Back Propagation, Computing Gradient**
 - Chain rule

3. **Updating Parameters**
 - SGD

4. **Training**
Batch (batch size)

Training cycle
for epoch in range(training_epochs):
 # Loop over all batches
 for i in range(total_batch):

In the neural network terminology:

- one epoch = one forward pass and one backward pass of all the training examples
- batch size = the number of training examples in one forward/backward pass. The higher the batch size, the more memory space you'll need.
- number of iterations = number of passes, each pass using [batch size] number of examples. To be clear, one pass = one forward pass + one backward pass (we do not count the forward pass and backward pass as two different passes).

Example: if you have 1000 training examples, and your batch size is 500, then it will take 2 iterations to complete 1 epoch.
Learning Rate

Left: A cartoon depicting the effects of different learning rates. With low learning rates the improvements will be linear. With high learning rates they will start to look more exponential. Higher learning rates will decay the loss faster, but they get stuck at worse values of loss (green line). This is because there is too much "energy" in the optimization and the parameters are bouncing around chaotically, unable to settle in a nice spot in the optimization landscape. Right: An example of a typical loss function over time, while training a small network on CIFAR-10 dataset. This loss function looks reasonable (it might indicate a slightly too small learning rate based on its speed of decay, but it's hard to say), and also indicates that the batch size might be a little too low (since the cost is a little too noisy).
Resources

Course: Stanford CS231n http://cs231n.stanford.edu/

CS231n: Convolutional Neural Networks for Visual Recognition
Spring 2017

Course Description

Computer Vision has become ubiquitous in our society, with applications in search, image understanding, apps, mapping, medicine, drones, and self-driving cars. Core to many of these applications are visual recognition tasks such as image classification, localization and detection. Recent developments in neural network (aka “deep learning”) approaches have greatly advanced the performance of these state-of-the-art visual recognition systems. This course is a deep dive into details of the deep learning architectures with a focus on learning end-to-end models for these tasks, particularly image classification. During the 10-week course, students will learn to implement, train and debug their own neural networks and gain a detailed understanding of cutting-edge research in computer vision. The final assignment will involve training a multi-million parameter convolutional neural network and applying it on the largest image classification dataset (ImageNet). We will focus on teaching how to set up the problem of image recognition, the learning algorithms (e.g. backpropagation), practical engineering tricks for training and fine-tuning the networks and guide the students through hands-on assignments and a final course project. Much of the background and materials of this course will be drawn from the ImageNet Challenge.
Resources

Bay Area Deep Learning School https://goo.gl/MvWKYr
Thank You