Image-to-Image Translation with Conditional Adversarial Networks

Phillip Isola, Jun-Yan Zhu, Tinghui Zhou and Alexei A. Efros
Berkeley AI Research (BAIR) Laboratory, UC Berkeley
Agenda

- Motivating the problem
- Introduction to GANs
- Method
- Dataset & tasks
- Evaluation Metrics
- Results
- Strength & Weakness
- Future Extension
Introduction: Image-to-Image Translation

Previous Methods

Required loss functions and architectures designed specifically for the task at hand.
Motivation

Goal: A general-purpose solution to image-to-image translation problems.

This paper: Use the same architecture and objective for each image-to-image translation task.
Quick Overview of Generative Adversarial Networks
Generative Adversarial Networks (GANs)

\[\mathcal{L}_{GAN}(G, D) = \mathbb{E}_y [\log D(y)] + \mathbb{E}_{x, z} [\log (1 - D(G(x, z)))]. \]
Conditional Generative Adversarial Networks (cGANs)

\[\mathcal{L}_{cGAN}(G, D) = \mathbb{E}_{x,y} [\log D(x, y)] + \mathbb{E}_{x,z} [\log (1 - D(x, G(x, z)))], \]

Objective

\[\mathcal{L}_{cGAN}(G, D) = \mathbb{E}_{x,y}[\log D(x, y)] + \mathbb{E}_{x,z}[\log(1 - D(x, G(x, z)))], \quad (1) \]

\[\mathcal{L}_{GAN}(G, D) = \mathbb{E}_y[\log D(y)] + \mathbb{E}_{x,z}[\log(1 - D(G(x, z)))]. \quad (2) \]

\[\mathcal{L}_{L1}(G) = \mathbb{E}_{x,y,z}[\|y - G(x, z)\|_1]. \quad (3) \]

\[G^* = \arg \min_G \max_D \mathcal{L}_{cGAN}(G, D) + \lambda \mathcal{L}_{L1}(G). \quad (4) \]
Generator

Encoder-Decoder Network

U-Net

Skip Connections

Discriminator

PatchGAN

Discriminator

PixelGAN

PatchGAN

ImageGAN
Optimization and Inference

- Alternate between one gradient descent step on D and one gradient descent step on G
- Minibatch SGD and Adam optimization
- At inference time, the generator net is run in exactly the same manner as during training phase

Datasets & Tasks

CityScape

CMP Facades

Map to Aerial
Datasets & Tasks

Edge to Photo Sketch to Photo Day to Light
Evaluation Metrics

AMT Perceptual Studies

Left or Right?
Evaluation Metrics

FCN-score

pixel accuracy: $\sum_i n_{ii} / \sum_i t_i$

mean accuracy: $\left(1/n_{cl}\right) \sum_i n_{ii} / t_i$

mean IU: $\left(1/n_{cl}\right) \sum_i n_{ii} / \left(t_i + \sum_j n_{ji} - n_{ii}\right)$
Experiment Results

Analysis of the Objective Function

<table>
<thead>
<tr>
<th>Loss</th>
<th>Per-pixel acc.</th>
<th>Per-class acc.</th>
<th>Class IOU</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1</td>
<td>0.42</td>
<td>0.15</td>
<td>0.11</td>
</tr>
<tr>
<td>GAN</td>
<td>0.22</td>
<td>0.05</td>
<td>0.01</td>
</tr>
<tr>
<td>cGAN</td>
<td>0.57</td>
<td>0.22</td>
<td>0.16</td>
</tr>
<tr>
<td>L1+GAN</td>
<td>0.64</td>
<td>0.20</td>
<td>0.15</td>
</tr>
<tr>
<td>L1+cGAN</td>
<td>0.66</td>
<td>0.23</td>
<td>0.17</td>
</tr>
<tr>
<td>Ground truth</td>
<td>0.80</td>
<td>0.26</td>
<td>0.21</td>
</tr>
</tbody>
</table>
Experiment Results

Analysis of generator architecture
Experiment Results

Receptive Field of Discriminator

<table>
<thead>
<tr>
<th>Discriminator receptive field</th>
<th>Per-pixel acc.</th>
<th>Per-class acc.</th>
<th>Class IOU</th>
</tr>
</thead>
<tbody>
<tr>
<td>1×1</td>
<td>0.39</td>
<td>0.15</td>
<td>0.10</td>
</tr>
<tr>
<td>16×16</td>
<td>0.65</td>
<td>0.21</td>
<td>0.17</td>
</tr>
<tr>
<td>70×70</td>
<td>0.66</td>
<td>0.23</td>
<td>0.17</td>
</tr>
<tr>
<td>286×286</td>
<td>0.42</td>
<td>0.16</td>
<td>0.11</td>
</tr>
</tbody>
</table>
Experiment Results

Perceptual Validation

<table>
<thead>
<tr>
<th>Loss</th>
<th>Photo → Map % Turkers labeled real</th>
<th>Map → Photo % Turkers labeled real</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1</td>
<td>2.8% ± 1.0%</td>
<td>0.8% ± 0.3%</td>
</tr>
<tr>
<td>L1+cGAN</td>
<td>6.1% ± 1.3%</td>
<td>18.9% ± 2.5%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Method</th>
<th>% Turkers labeled real</th>
</tr>
</thead>
<tbody>
<tr>
<td>L2 regression from [58]</td>
<td>16.3% ± 2.4%</td>
</tr>
<tr>
<td>Zhang et al. 2016 [58]</td>
<td>27.8% ± 2.7%</td>
</tr>
<tr>
<td>Ours</td>
<td>22.5% ± 1.6%</td>
</tr>
</tbody>
</table>
Experiment Results

Rich Community Driven Results

Edges2Cats
Background Masking
Strength & Weaknesses

Strength:

1. An easily generalizable structure to conduct image-to-image translation tasks.
2. A good combination of existing techniques and well-designed loss function to ensure the generation of high-quality synthesized image.

Weakness:

1. Required large number of 1-to-1 paired images for training, which are expensive to collect.
2. Does not provide decent comparisons between this network with the other task-specific model to defend its claim for good generalizability.
Future Extension

1. Modify the structure such that it can learn the translation mapping with unpaired images in two different domains.

2. Further improvement to generate photorealistic image.