Poselets

Lubomir Bourdev and Jitendra Malik
EECS, U.C. Berkeley and Adobe Systems

PRESENTED BY: SUGEERTH MURUGESAN
Motivation

• Pose has:
 • Appearance Space – pixel values
 • Configuration Space – 3D coordinates parts

Appearance space is function of:
• Clothing
• Viewpoint
• Occlusion
• Illumination
Motivation

Challenges in computer vision:
• Detection
• Joint Localization
• Segmentation
Motivation

What if?

Use Divide and Conquer
◦ to detect “parts” to factor complexity
◦ Need for:
 ◦ Introducing Poselets
 ◦ Algorithm to select Poselets

Where is the bounding box?
Poselets

Poselets capture part of the pose from a given viewpoint
Examples may differ visually but have common semantics
How do we train a poselet for a given pose configuration?
H3D dataset

3D annotation of keypoints

Pixel level labels

Azimuth angles of frontal profiles and expected arm bending

[2] Taylor "Reconstruction of articulated objects from point correspondences in a single uncalibrated image."
H3D dataset

Conditional probability masks

Appearance queries

Finding correspondences at training time

Given part of a human pose

How do we find a similar pose configuration in the training set?

Finding correspondences at training time

We use keypoints to annotate the joints, eyes, nose, etc. of people.
Method (Finding Candidates)

Distance from example s to example r as:

$$d_s(r) = \sum_i w_s(i)||x_s(i) - x_r(i)||^2_2(1 + h_{s,r}(i))$$

Where $X_s(i) = [x, y, z]$ are normalized 3D coordinates of the i-th keypoint of the example s. The weight is $w_s(i)$ a Gaussian with mean at the center of the patch.

The term $h_{s,r}(i)$ is a penalty based on the visibility mismatch of keypoint i in the two examples.
Finding correspondences at training time

We use keypoints to annotate the joints, eyes, nose, etc. of people

Training poselet classifiers

1. Given a seed patch
2. Find the closest patch for every other person
3. Sort them by residual error
4. Threshold them
5. Use them as positive training examples to train a linear SVM with HOG features

Examples

Top: 3D configuration space,
Bottom: Appearance space

Example query regions (left column) and the corresponding closest matches in configuration space generated by H3D.

Which poselets should we train?

Choose thousands of random windows, generate poselet candidates, train linear SVMs

Select a small set of poselets that are:
 ◦ Individually effective
 ◦ Complementary

Object localization

Experiments: Torso Detection
State of the art in Torso Detection

Frontal detector of Bourdev and Brandt [2]
Pedestrian detector of Dalal and Triggs [3]
The parts-based deformable detector of Felzenszwalb, Mcallester [5]

Experiments

Detecting Keypoints

Detection rate of some keypoints conditioned on true positive detection.

Other Uses of Poselets

Object Segmentation (CVPR 2011)
- Predict area using “soft masks”
- Deformation to match image edges
- Extends poselets to other objects, Birdlets

Activity Recognition (CVPR 2011)
- Recognition from a single image
- Use which poselets fired and to what extent to predict the activity

Some Poselets
Conclusion & Future Work

Conclusion

• The authors propose a two-layer classification/regression model for detecting people and localizing body components.
• 3D annotation guides the search for good parts.

Future work

• Use H3D more widely
• Using poselets for recognizing complex tasks
Poselets website

http://eecs.berkeley.edu/~lbourdev/poselets

- The set of published poselet papers
- H3D data set + Matlab tools
- Java3D annotation tool + video tutorial
- Matlab code to detect people using poselets
- Our latest trained poselets
Prior work

Dalal and Triggs ‘05

- Learn to classify pedestrians vs. background
- HOG + linear SVM
- Doesn’t account for variations in body pose and viewpoint

Which image has the poselet?

Which poselets are discriminative for gender?

Preferred by human subjects

Preferred by our system

[Bourdev et al., ICCV11]
Selecting a small set of complementary poselets

<table>
<thead>
<tr>
<th></th>
<th>Person 1</th>
<th>Person 2</th>
<th>Person 3</th>
<th>Person 4</th>
<th>Person 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Selected poselets

Poselet coverage table

Poselet 4 activates on person 5