Image Webs
Computing and Exploiting Connectivity in Image Collections

Kyle Heath, Natasha Gelfand, Maks Ovsjanikov, Mridul Aanjaneya, Leo Guibas
Stanford University, Nokia Research - Palo Alto

Presenter: Sugeerth Murugesan
Large image collections are emerging

- Innovation in devices
 - Images are cheap and easy to create and store
- Availability of high-speed internet
 - Images are easy to share

Flickr ~ 3.6 billion
Challenges in large image collections

- **Challenges**
 - Understanding large image collections
 - Retrieval of information you want

- **Opportunities**
 - Lots of visual information which is yet uneasy to access
 - Use data driven approach for hard problems like general object recognition

Kyle Heath et. al, Image Webs Computing and Exploiting Connectivity in Image Collections
Goal: Link images together like web documents

- Discover “visual hyperlinks” between images in the collection induced by shared objects

- Exploit these links to search, visualize, and mine data from large image collections

Kyle Heath et. al, Image Webs Computing and Exploiting Connectivity in Image Collections
Goal: Link images together like web documents

Kyle Heath et. al, Image Webs Computing and Exploiting Connectivity in Image Collections
Overview

- What is an Image Web?
- Efficient construction
- Application demo
What is an Image Web?

- An **Image Web** is a graph generated by
 - Detecting corresponding regions in pairs of images
 - Forming links between these regions
Link types

- **Match (M)-links** (density of matches)
- **Overlap (O)-links** (degree of overlap)
- **Pivot (P)-links** (fixed distance)
Affine cosegmentation

Goal: Detect the shared region between a pair of images

Keypoints
1) Harris – affine
2) Hessian-affine
3) Maximal color stable regions with SIFT descriptors

Feature matching
- Detecting affine consistent features

Shared region segmentation
- Merging keypoint support regions
Efficient Image Web construction

- Ideally an Image Web would be built by cosegmenting all pairs of images
 - $O(N^2)$ cosegmentation operations too expensive
- Instead, quickly recover the essential connectivity with a small number of cosegmentation attempts
 - Phase 1: Discover connected components
 - Phase 2: Boost component connectivity
Phase 1: Discover connected components

- **Pre-processing**
 - Each image contributes cosegmentation candidates by pairing it with its top K CBIR (Content based image retrieval) results
 - List of candidates from all images sorted by CBIR similarity score

- **Online**
 - Choose next valid candidate in list
 - Candidate pair valid if images are in different connected components of image-graph

Kyle Heath et. al, Image Webs Computing and Exploiting Connectivity in Image Collections
Phase 2: Boost component connectivity

Use notion of connectivity from spectral graph theory

Algebraic connectivity
- Second smallest Eigenvalue λ_2 of the matrix graph Laplacian

$$L_{i,j} = \begin{cases}
 d(i) & \text{if } i = j \\
 -1 & \text{if } (i, j) \in E \\
 0 & \text{otherwise}
\end{cases}$$

$\deg(i)$ Degree of vertex i

v_2 Fidler vector, eigen vector of second smallest Eigenvalue
Phase 2: Boost component connectivity

- Want a fixed number of additional edges to maximize algebraic connectivity (NP-hard*)
- Instead, use a greedy strategy proposed by Wang and Van Mieghem **
 - Select next pair of vertices to connect according to largest absolute difference of corresponding entries in the Fiedler vector

\[e = (s, t) \quad c_e = \left| v_2(s) - v_2(t) \right| \]

Phase 2: Boost component connectivity

EdgeRank candidate selection strategy:

1) Each image contributes cosegmentation candidate edges by pairing it with its top K CBIR results (among images in same component)

2) Sort candidate edges in decreasing order of connectivity score $c_e = |v_2(s) - v_2(t)|$ $e = (s, t)$

3) Attempt cosegmentation in this order...
 If a cosegmentation attempt succeeds, update Laplacian matrix L and Fiedler vector v_2 and return to step 2

Power iteration method

$$v_2 = \frac{(2nI - L)v_2}{\|(2nI - L)v_2\|_2}, \quad v_2 = v_2 - \frac{1}{n} \sum_{j=1}^{n} v_2(j)$$

Kyle Heath et. al, *Image Webs* Computing and Exploiting Connectivity in Image Collections
Evaluation: Phase 1 strategy

- Dataset: 50,000 StreetView images from Pittsburgh

Impact of candidate selection strategy on connected component discovery

23 components (95,075 operations)
372 components (177,671 operations)
Evaluation: Phase 2 strategy

Dataset: 1,257 images in art museum

(a) Connectivity / Construction Time

(b) Edges / Construction Time

(c) Connectivity / Edges

Kyle Heath et. al, Image Webs Computing and Exploiting Connectivity in Image Collections
Distributed implementation

- Construction pipeline easily distributed on a computer cluster
 - A manager node issues feature extraction, CBIR, and cosegmentation jobs to worker nodes
 - Communication using the Internet Communication Engine (ICE) middleware and a shared file system

Image Web Construction Timings on Cluster with 500 Nodes

<table>
<thead>
<tr>
<th>Collection Name (Source)</th>
<th>Images</th>
<th>Components (size > 1)</th>
<th>Largest Component</th>
<th>Construction Time (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stanford (Flickr)</td>
<td>193,277</td>
<td>12,505</td>
<td>11,240</td>
<td>173</td>
</tr>
<tr>
<td>Pittsburgh (StreetView)</td>
<td>50,224</td>
<td>23</td>
<td>49,907</td>
<td>7.9</td>
</tr>
<tr>
<td>London (Panoramio)</td>
<td>17,925</td>
<td>902</td>
<td>4,617</td>
<td>7.7</td>
</tr>
<tr>
<td>Art Museum (created)</td>
<td>1,257</td>
<td>5</td>
<td>1,217</td>
<td>0.06</td>
</tr>
</tbody>
</table>

Kyle Heath et. al., *Image Webs*: Computing and Exploiting Connectivity in Image Collections
Applications

- Image collection exploration

Visual Hyperlink Browser (low-level view)

Summary Graph Browser (high-level view)

Kyle Heath et. al., Image Webs Computing and Exploiting Connectivity in Image Collections
Summary Graph

- **Problem:** Image Web can be large and complex, visualization may be difficult

- **Goal:** Create a simplified representation at a desired level of detail that captures the global structure

- **Approach:** Apply techniques from computational topology to detect structures that persist across scales

Kyle Heath et. al., Image Webs Computing and Exploiting Connectivity in Image Collections
Future Work

• Extract meaning “in words” of a path between two image.

• Analyzing sub graphs, does it provide interesting cues?

• Scalability to millions of nodes??
Why optimize connectivity?

From *Building Rome in a Day* - S. Agarwal, et al. ICCV 2009
Applications

Summary Graph

Image Collection Exploration

Kyle Heath et. al, Image Webs Computing and Exploiting Connectivity in Image Collections
Content based image retrieval

Positive examples

Interactive addition of positive examples

People with mostly vegetation in the background

Rough set theory

Negative examples

Interactive addition of negative examples

Retrieval with decision rules

Video archive

Retrieval result