Uniprocessor Optimization of Matrix Multiplications and BLAS

For an extended discussion, see Berkeley CS267 Lecture on "Single Processor Machines: Memory Hierarchies and Processor Features" by J. Demmel
Outline

1. Memory Hierarchies
2. Cache and its importance in performance
3. Optimizing matrix multiply for caches
4. BLAS
5. Optimization in practice
6. Supplement: Strassen’s algorithm
Memory Hierarchy

• Most programs have a high degree of locality in their accesses
 • spatial locality: accessing things nearby previous accesses
 • temporal locality: reusing an item that was previously accessed

• Memory hierarchy tries to exploit locality

• By taking advantage of the principle of locality:
 • present the user with as much memory as is available in the cheapest technology
 • Provide access at the speed offered by the fastest technology
Memory Hierarchy

<table>
<thead>
<tr>
<th>Level</th>
<th>Control</th>
<th>Datapath</th>
<th>Processor</th>
</tr>
</thead>
<tbody>
<tr>
<td>On-Chip Cache</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Registers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Second Level Cache (SRAM)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Main Memory (DRAM)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Secondary Storage (Disk)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tertiary Storage (Disk/Tape)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Speed (ns):
- 1s
- 10s
- 100s
- 10,000,000s (10s ms)
- 10,000,000,000s (10s sec)

Size (bytes):
- 100s
- Ks
- Ms
- Gs
- Ts
Levels of the Memory Hierarchy

Capacity

- **CPU Registers**
 - 100s Bytes
 - <10s ns

- **Cache**
 - K Bytes
 - 10-100 ns
 - 1-0.1 cents/bit

- **Main Memory**
 - M Bytes
 - 200ns-500ns
 - $0.001-.00001$ cents/bit

- **Disk**
 - G Bytes, 10 ms
 - (10,000,000 ns)
 - 10^{-5} - 10^{-6} cents/bit

- **Tape**
 - infinite sec-min
 - 10^{-8}

Access Time

- **Registers**
 - Instr. Operands
 - 100s Bytes
 - <10s ns

- **Cache**
 - Blocks
 - K Bytes
 - 10-100 ns
 - 1-0.1 cents/bit

- **Memory**
 - Pages
 - M Bytes
 - 200ns-500ns
 - $0.001-.00001$ cents/bit

- **Disk / Distributed Memory**
 - Files
 - G Bytes, 10 ms
 - (10,000,000 ns)
 - 10^{-5} - 10^{-6} cents/bit

- **Tape / Clusters**
 - infinite sec-min
 - 10^{-8}

Cost

- **Upper Level**
 - Faster

- **Staging Xfer Unit**
 - faster
 - prog./compiler
 - 1-8 bytes
 - cache cntl
 - 8-128 bytes
 - OS
 - 512-4K bytes
 - user/operator
 - Mbytes

- **Lower Level**
 - Larger

Upper Level

Lower Level
Idealized Uniprocessor Model

• Processor names bytes, words, etc. in its address space
 • These represent integers, floats, pointers, arrays, etc.
 • Exist in the program stack, static region, or heap

• Operations include
 • Read and write (given an address/pointer)
 • Arithmetic and other logical operations

• Order specified by program
 • Read returns the most recently written data
 • Compiler and architecture translate high level expressions into “obvious” lower level instructions
 • Hardware executes instructions in order specified by compiler

• Cost
 • Each operations has roughly the same cost (read, write, add, multiply, etc.)
Uniprocessors in the Real World

• Real processors have
 • registers and caches
 • small amounts of fast memory
 • store values of recently used or nearby data
 • different memory ops can have very different costs
 • parallelism
 • multiple “functional units” that can run in parallel
 • different orders, instruction mixes have different costs
 • pipelining
 • a form of parallelism, like an assembly line in a factory

• Why is this your problem?
 In theory, compilers understand all of this and can optimize your program; in practice they don’t.
Processor-DRAM Gap (latency)

- Memory hierarchies are getting deeper
- Processors get faster more quickly than memory

- **“Moore’s Law”**
- **Processor-Memory Performance Gap:** (grows 50% / year)
- **µProc** 60%/yr.
- **DRAM** 7%/yr.
Matrix-multiply, optimized several ways

Speed of n-by-n matrix multiply on Sun Ultra-1/170, peak = 330 MFlops
Cache and Its Importance in Performance

• Motivation:
 • Time to run code = clock cycles running code
 + clock cycles waiting for memory
 • For many years, CPU’s have sped up an average of 50% per year over memory chip speed ups.
 • Hence, memory access is computing the bottleneck. The computational cost of an algorithm can already exceed arithmetic cost by orders of magnitude, and the gap is growing.
 • Ref: Graham, Snior and Patterson, ``Getting up to speed: the future of supercomputing”, National Academies Press, 2005.
Cache Benefits

• Data cache was designed with two key concepts in mind
 • Spatial Locality
 • When an element is referenced its neighbors will be referenced too
 • Cache lines are fetched together
 • Work on consecutive data elements in the same cache line
 • Temporal Locality
 • When an element is referenced, it might be referenced again soon
 • Arrange code so that data in cache is reused often
Lessons

• Actual performance of a simple program can be a complicated function of the architecture
 • Slight changes in the architecture or program change the performance significantly
 • To write fast programs, need to consider architecture
 • We would like simple models to help us design efficient algorithms
 • Is this possible?

• We will illustrate with a common technique for improving cache performance, called blocking or tiling
 • Basic idea: used divide-and-conquer to define a problem that fits in register/L1-cache/L2-cache
Note on Matrix Storage

• A matrix is a 2-D array of elements, but memory addresses are “1-D”

• Conventions for matrix layout
 • by column, or “column major” (Fortran default)
 • by row, or “row major” (C default)

<table>
<thead>
<tr>
<th>Column major</th>
<th>Row major</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 5 10 15</td>
<td>0 1 2 3</td>
</tr>
<tr>
<td>1 6 11 16</td>
<td>4 5 6 7</td>
</tr>
<tr>
<td>2 7 12 17</td>
<td>8 9 10 11</td>
</tr>
<tr>
<td>3 8 13 18</td>
<td>12 13 14 15</td>
</tr>
<tr>
<td>4 9 14 19</td>
<td>16 17 18 19</td>
</tr>
</tbody>
</table>
Using a Simple Model of Memory to Optimize

• Assume just 2 levels in the hierarchy, fast and slow

• All data initially in slow memory
 • $m =$ number of memory elements (words) moved between fast and slow memory
 • $t_m =$ time per slow memory operation
 • $f =$ number of arithmetic operations
 • $t_f =$ time per arithmetic operation $<< t_m$
 • $q = f / m$ average number of flops per slow element access

• Minimum possible time = $f \times t_f$ when all data in fast memory

• Total time $f \times t_f + m \times t_m = f \times t_f \times (1 + t_m/t_f \times 1/q)$

• Larger q means Total time closer to minimum $f \times t_f$

Key to algorithm efficiency

Key to machine efficiency
Warm up: Matrix-vector multiplication

\{\text{implements } y = y + A^*x\}

\[\text{for } i = 1:n\]

\[\quad \text{for } j = 1:n\]

\[y(i) = y(i) + A(i,j) \cdot x(j)\]

\[\begin{array}{c}
\begin{array}{c}
\text{y(i)}
\end{array}
\end{array} = \begin{array}{c}
\begin{array}{c}
\text{y(i)}
\end{array}
\end{array} + \begin{array}{c}
\begin{array}{c}
A(i,:) \cdot x(:)
\end{array}
\end{array}\]
Warm up: Matrix-vector multiplication

\[
\{\text{read } x(1:n) \text{ into fast memory}\} \\
\{\text{read } y(1:n) \text{ into fast memory}\} \\
\text{for } i = 1:n \\
\quad \{\text{read row } i \text{ of } A \text{ into fast memory}\} \\
\quad \text{for } j = 1:n \\
\quad \quad y(i) = y(i) + A(i,j) \times x(j) \\
\{\text{write } y(1:n) \text{ back to slow memory}\}
\]

- \(m = \text{number of slow memory refs} = 3n + n^2 \)
- \(f = \text{number of arithmetic operations} = 2n^2 \)
- \(q = f / m \approx 2 \)

- Matrix-vector multiplication limited by slow memory speed
“Naïve” Matrix Multiply

\{\text{implements } C = C + A \times B\}

\begin{align*}
\text{for } i & = 1 \text{ to } n \\
\quad \text{for } j & = 1 \text{ to } n \\
\quad \quad \text{for } k & = 1 \text{ to } n \\
C(i,j) & = C(i,j) + A(i,k) \times B(k,j)
\end{align*}
“Naïve” Matrix Multiply

{implements $C = C + A^*B$}

for $i = 1$ to n

{read row i of A into fast memory}

for $j = 1$ to n

{read $C(i,j)$ into fast memory}

{read column j of B into fast memory}

for $k = 1$ to n

$C(i,j) = C(i,j) + A(i,k) \times B(k,j)$

{write $C(i,j)$ back to slow memory}
“Naïve” Matrix Multiply

Number of slow memory references on unblocked matrix multiply

\[m = n^3 \text{ read each column of } B \text{ } n \text{ times} \]

\[+ n^2 \text{ read each row of } A \text{ once} \]

\[+ 2n^2 \text{ read and write each element of } C \text{ once} \]

\[= n^3 + 3n^2 \]

Therefore

\[q = \frac{f}{m} = \frac{2n^3}{n^3 + 3n^2} \approx 2 \text{ for large } n, \]

No improvement over matrix-vector multiply!

\[C(i,j) = C(i,j) + A(i,:) \times B(:,j) \]
Blocked (Tiled) Matrix Multiply

Consider A, B, C to be N by N matrices of b by b subblocks where $b = n / N$ is called the block size.

for $i = 1$ to N
 for $j = 1$ to N
 {read block $C(i,j)$ into fast memory}
 for $k = 1$ to N
 {read block $A(i,k)$ into fast memory}
 {read block $B(k,j)$ into fast memory}
 $C(i,j) = C(i,j) + A(i,k) \times B(k,j)$ {do a matrix multiply on blocks}
 {write block $C(i,j)$ back to slow memory}
Blocked (Tiled) Matrix Multiply

Recall:
- \(m \) is amount memory traffic between slow and fast memory
- matrix has \(nxn \) elements, and \(NxN \) blocks, each of size \(bxb \)
- \(f \) is number of floating point operations, \(f = 2n^3 \)
- \(q = f / m \): measure of algorithm efficiency in the memory system

The amount of memory traffic is
\[
m = N^n^2 \quad \text{read each block of } B \quad N^3 \text{ times} \quad (N^3 * n/N * n/N) \\
+ N^n^2 \quad \text{read each block of } A \quad N^3 \text{ times} \\
+ 2n^2 \quad \text{read and write each block of } C \quad \text{once} \\
= (2N + 2) * n^2
\]

Therefore
\[
q = f / m = 2n^3 / ((2N + 2) * n^2) \sim = n / N = b \quad \text{for large } n
\]

Hence we can improve performance by increasing the blocksize \(b \).
The blocked algorithm has ratio $q \approx b$

- The larger the block size, the more efficient our algorithm will be
- Limit: All three blocks from A, B, C must fit in fast memory (cache), so we cannot make these blocks arbitrarily large:
 \[3b^2 \leq M, \text{ so } q \approx b \leq \sqrt{M/3} \]

There is a lower bound result:

Theorem (Hong & Kung, 1981): Any reorganization of this algorithm (that uses only algebraic associativity) is limited to $q = O(\sqrt{M})$
Fast linear algebra kernels: BLAS

• Simple linear algebra kernels such as matrix-matrix multiply
• More complicated algorithms can be built from these basic kernels.
• The interfaces of these kernels have been standardized as the Basic Linear Algebra Subroutines (BLAS).
• Early agreement on standard interface (~1980)
• Led to portable libraries for vector and shared memory parallel machines.
• On distributed memory, there is a less-standard interface called the PBLAS
BLAS: advantages

• **Clarity:** code is shorter and easier to read,

• **Modularity:** gives programmer larger building blocks,

• **Performance:** manufacturers will provide tuned machine-specific BLAS,

• **Program portability:** machine dependencies are confined to the BLAS
Basic Linear Algebra Subroutines

• History
 • BLAS1 (1970s):
 • vector operations: dot product, saxpy ($y=\alpha x+y$), etc
 • $m=2n$, $f=2n$, $q \sim 1$ or less
 • BLAS2 (mid 1980s)
 • matrix-vector operations: matrix vector multiply, etc
 • $m=n^2$, $f=2n^2$, $q\sim2$, less overhead
 • somewhat faster than BLAS1
 • BLAS3 (late 1980s)
 • matrix-matrix operations: matrix matrix multiply, etc
 • $m \geq 4n^2$, $f=O(n^3)$, so q can possibly be as large as n, so BLAS3 is potentially much faster than BLAS2
• Good algorithms used BLAS3 when possible (e.g., LAPACK)
• See www.netlib.org/blas, www.netlib.org/lapack
Level 1, 2 and 3 BLAS

- **Level 1 BLAS** Vector-Vector operations
- **Level 2 BLAS** Matrix-Vector operations
- **Level 3 BLAS** Matrix-Matrix operations
Level 1 BLAS

• Operate on vectors or pairs of vectors
 • perform $O(n)$ operations;
 • return either a vector or a scalar.

• saxpy
 • $y(i) = a \times x(i) + y(i)$, for $i=1$ to n.
 • s stands for single precision, daxpy is for double precision, caxpy for complex, and zaxpy for double complex,

• sscal $y = a \times x$, for scalar a and vectors x, y

• sdot computes $s = \sum_{i=1}^{n} x(i) \times y(i)$
Level 2 BLAS

- Operate on a matrix and a vector;
 - return a matrix or a vector;
 - $O(n^2)$ operations

- \textit{sgemv}: matrix-vector multiply
 - $y = y + A\times x$
 - where A is m-by-n, x is n-by-1 and y is m-by-1.

- \textit{sger}: rank-one update
 - $A = A + y\times x^T$, i.e., $A(i,j) = A(i,j) + y(i)\times x(j)$
 - where A is m-by-n, y is m-by-1, x is n-by-1,
 - \textit{strsv}: triangular solve
 - solves $y = T\times x$ for x, where T is triangular
Level 3 BLAS

• Operate on pairs or triples of matrices
 • returning a matrix;
 • complexity is $O(n^3)$.

• sgemm: Matrix-matrix multiplication
 • $C = C + A*B$,
 • where C is m-by-n, A is m-by-k, and B is k-by-n

• strsm: multiple triangular solve
 • solves $Y = T*X$ for X,
 • where T is a triangular matrix, and X is a rectangular matrix.
Why Higher Level BLAS?

• Can only do arithmetic on data at the top of the hierarchy

• Higher level BLAS lets us do this

<table>
<thead>
<tr>
<th>BLAS</th>
<th>Memory Refs</th>
<th>Flops</th>
<th>Flops/Memory Refs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level 1</td>
<td>3n</td>
<td>2n</td>
<td>2/3</td>
</tr>
<tr>
<td>$y = y + \alpha x$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Level 2</td>
<td>n^2</td>
<td>$2n^2$</td>
<td>2</td>
</tr>
<tr>
<td>$y = y + Ax$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Level 3</td>
<td>$4n^2$</td>
<td>$2n^3$</td>
<td>$n/2$</td>
</tr>
<tr>
<td>$C = C + AB$</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
BLAS for Performance

Intel Pentium 4 w/SSE2 1.7 GHz

Order of vector/Matrices vs. Mflop/s

Level 3 BLAS
Level 2 BLAS
Level 1 BLAS
BLAS for Performance

IBM RS/6000-590 (66 MHz, 264 Mflop/s Peak)

- Level 3 BLAS
- Level 2 BLAS
- Level 1 BLAS
Locality in Other Algorithms

- The performance of any algorithm is limited by q
- In matrix multiply, we increase q by changing computation order
 - increased temporal locality

- For other algorithms and data structures, even hand-transformations are still an open problem
 - sparse matrices (reordering, blocking)
 - trees (B-Trees are for the disk level of the hierarchy)
 - linked lists (some work done here)
Tiling (Blocking) Alone Might Not Be Enough

- Naïve and a “naïvely tiled” code
Optimizing in Practice

• Tiling for registers
 • loop unrolling, use of named “register” variables

• Tiling for multiple levels of cache

• Exploiting fine-grained parallelism in processor
 • superscalar; pipelining

• Complicated compiler interactions

• Automatic optimization an active research area
 • BeBOP: www.cs.berkeley.edu/~richie/bebop
 • PHiPAC: www.icsi.berkeley.edu/~bilmes/phipac
 in particular tr-98-035.ps.gz
 • ATLAS: www.netlib.org/atlas
 • GotoBLAS
PHiPAC: Portable High Performance ANSI C

Speed of n-by-n matrix multiply on Sun Ultra-1/170, peak = 330 MFlops
ATLAS (DGEMM n = 500)

ATLAS is faster than all other portable BLAS implementations and it is comparable with machine-specific libraries provided by the vendor. (Incorporated in MATLAB)

<table>
<thead>
<tr>
<th>Architectures</th>
<th>MFLOPS Vendor BLAS</th>
<th>MFLOPS ATLAS BLAS</th>
<th>MFLOPS F77 BLAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMD Athlon-600</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEC ev56-533</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEC ev6-500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HP9000/735/135</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IBM PPC604-112</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IBM Power2-160</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IBM Power3-200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pentium Pro-200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pentium II-266</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pentium III-550</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SGI R10000ip28-200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SGI R12000ip30-270</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sun UltraSparc2-200</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Source: Jack Dongarra
Summary

• Performance programming on uniprocessors requires
 • understanding of fine-grained parallelism in processor
 • produce good instruction mix
 • understanding of memory system
 • levels, costs, sizes
 • improve locality

• Blocking (tiling) is a basic approach
 • Techniques apply generally, but the details (e.g., block size) are architecture dependent
 • Similar techniques are possible on other data structures and algorithms
Supplement: Strassen’s algorithm
Conventional Block Matrix Multiply

2 by 2 block matrix multiply:

\[
\begin{pmatrix}
C_{11} & C_{12} \\
C_{21} & C_{22}
\end{pmatrix}
= \begin{pmatrix}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{pmatrix}
\begin{pmatrix}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{pmatrix}
\]

where

\[
C_{11} = A_{11}B_{11} + A_{12}B_{21}
\]

\[
C_{12} = A_{11}B_{12} + A_{12}B_{22}
\]

\[
C_{21} = A_{21}B_{11} + A_{22}B_{21}
\]

\[
C_{22} = A_{21}B_{12} + A_{22}B_{22}
\]
Strassen’s algorithm

Strassen does it with 7 multiplies (but many more adds)

\[
P_1 = (A_{11} + A_{22})(B_{11} + B_{22}) \\
P_2 = (A_{21} + A_{22})B_{11} \\
P_3 = A_{11}(B_{12} - B_{22}) \\
P_4 = A_{22}(B_{21} - B_{11}) \\
P_5 = (A_{11} + A_{12})B_{22} \\
P_6 = (A_{21} - A_{11})(B_{11} + B_{12}) \\
P_7 = (A_{12} - A_{22})(B_{21} + B_{22})
\]

\[
C_{11} = P_1 + P_4 - P_5 + P_7 \\
C_{12} = P_3 + P_5 \\
C_{21} = P_2 + P_5 \\
C_{22} = P_1 + P_3 - P_2 + P_6
\]

One matrix multiply is replaced by 14 matrix additions
Strassen’s algorithm

- The count of arithmetic operations is:

<table>
<thead>
<tr>
<th></th>
<th>Mult</th>
<th>Add</th>
<th>Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regular</td>
<td>8</td>
<td>4</td>
<td>$2n^3 + O(n^2)$</td>
</tr>
<tr>
<td>Strassen</td>
<td>7</td>
<td>18</td>
<td>$4.7n^{2.8} + O(n^2)$</td>
</tr>
</tbody>
</table>

- Current world’s record is $O(n^{2.376})$

- In reality the use of Strassen’s algorithm is limited by:
 - Additional memory required for storing the P matrices.
 - More memory accesses are needed.