ECS289: Scalable Machine Learning

Cho-Jui Hsieh
UC Davis

Oct 6, 2015
Outline

- Multi-core v.s. multi-processor
- Parallel Gradient Descent
- Parallel Stochastic Gradient
- Parallel Coordinate Descent
Parallel Programming

Parallel algorithms can be different for the following two cases:

- **Shared Memory Model (Multiple cores/multiple processors)**
 - Independent L1 cache
 - Shared/independent L2 cache
 - Shared memory

- **Distributed Memory Model (Multi computers)**
 - Multiple computers
Shared Memory Model (Multiple cores)

- Shared memory model: each CPU can access the same memory space
- Programming tools:
 - C/C++: openMP, C++ thread, pthread, intel TBB, ...
 - Python: thread, ...
 - Matlab: parfor, ...

![Diagram of shared memory model with multiple CPUs and system memory]
Parallel for loop in OpenMP (*)

```c
#pragma omp parallel for private(i)
for(i=0;i<w_size;i++)
g[i] = w[i] + g[i];
```
Shared Memory Model (*)

Diagram showing a shared memory model with two processors, each having two cores. The processors are connected to a system memory.
Two types of shared memory model:

1. Uniform Memory Access (UMA)
2. Non-Uniform Memory Access (NUMA)
Distributed Memory Model

- Programming tools: MPI, Hadoop, Spark, ...
Parallel Gradient Descent
Parallel Gradient Descent

- Gradient descent:
 \[\mathbf{x} \leftarrow \mathbf{x} - \alpha \nabla f(\mathbf{x}) \]

- Gradient computation is usually embarrassingly parallel

- Example: empirical risk minimization can be written as

 \[
 \argmin_{\mathbf{w}} \frac{1}{n} \sum_{i=1}^{n} f_i(\mathbf{w})
 \]

- Partition the dataset into \(k \) subsets \(S_1, \ldots, S_k \)
- Each machine or CPU computes \(\sum_{i \in S_i} \nabla f_i(\mathbf{w}) \)
- Aggregated local gradients to get the global gradient (communication)

 \[
 \nabla f(\mathbf{w}) = \frac{1}{n} \left(\sum_{i \in S_1} \nabla f_i(\mathbf{w}) + \cdots + \sum_{i \in S_k} \nabla f_i(\mathbf{w}) \right)
 \]
Parallel Stochastic Gradient
Stochastic Gradient (SG):

For \(t = 1, 2, \ldots \) \(i \)

Randomly pick an index \(i \)

\(\mathbf{w}^{t+1} \leftarrow \mathbf{w}^t - \eta_t \nabla f_i(\mathbf{w}^t) \)

Computation of \(\nabla f_i(\mathbf{w}^t) \) only depends on the \(i \)-th sample—usually cannot be parallelized.

Parallelizing SG is a hard research problem.
Mini-batch SG

- Mini-batch SG with batch size b:

 For $t = 1, 2, \ldots$

 Randomly pick a subset $S \subset \{1, \ldots, n\}$ with size b

 $$w^{t+1} \leftarrow w^t - \eta \frac{1}{b} \sum_{i \in S} \nabla f_i(w^t)$$

- Equivalent to gradient descent when $b = n$
- Equivalent to stochastic gradient when $b = 1$
Mini-batch SG

- Mini-batch SG with batch size b:

 For $t = 1, 2, \ldots$

 Randomly pick a subset $S \subset \{1, \ldots, n\}$ with size b

 $$w^{t+1} \leftarrow w^t - \eta \frac{1}{b} \sum_{i \in S} \nabla f_i(w^t)$$

- Equivalent to gradient descent when $b = n$
- Equivalent to stochastic gradient when $b = 1$
- Parallelization: let $S = S_1 \cup S_2 \cup \cdots \cup S_k$

 $$\sum_{i \in S} \nabla f_i(w^t) = \sum_{i \in S_1} \nabla f_i(w^t) + \sum_{i \in S_2} \nabla f_i(w^t) + \cdots + \sum_{i \in S_k} f_i(w^t)$$

 can be computed in parallel

- Other versions: divide-and-average (Mann et al., 2009; Zinkevich et al., 2010)
How to choose batch size b?

- smaller b (batch size) larger
- faster convergence slower
- more Communication time less
Mini-batch SG on distributed systems (*)

- Can we avoid wasting communication time?
- Use **non-blocking** network IO:
 Keep computing updates while aggregating the gradient

See (Dekel et al., “Optimal Distributed Online Prediction Using Mini-Batches”. In JMLR 2012)
Asynchronous Stochastic Gradient

- Synchronized algorithms: all the machine has to stop and synchronize at some points
 ⇒ longer waiting time
The original SG:

For $t = 1, 2, \ldots$
 - Randomly pick an index i
 - $w \leftarrow w - \eta \nabla f_i(w)$
Asynchronous Stochastic Gradient (shared memory)

- The asynchronous parallel SG:

 Each thread repeatedly performs the following updates:
 For $t = 1, 2, \ldots$
 - Randomly pick an index i
 - $\mathbf{w} \leftarrow \mathbf{w} - \eta \nabla f_i(\mathbf{w})$
Asynchronous Stochastic Gradient (shared memory)

- The asynchronous parallel SG:

 Each thread repeatedly performs the following updates:

 For \(t = 1, 2, \ldots \)

 Randomly pick an index \(i \)

 \[
 w \leftarrow w - \eta \nabla f_i(w)
 \]

- Main trick: in shared memory systems, every threads can access the same parameter \(w \)

- First discussed in (Langford et al., “Slow learners are fast”. In NIPS 2009)

Asynchronous Stochastic Gradient (shared memory) (*)

- For convex function, converges to the global optimum under certain conditions:
 (1) bounded delay, (2) small confliction rate
- For non-convex function, the convergence property is proved in: “Asynchronous Parallel Stochastic Gradient for Nonconvex Optimization”. In NIPS 2015
Asynchronous Stochastic Gradient (distributed memory)

- Use a **parameter server** to update the parameters

\[w' = w - \eta \Delta w \]

See Dean et al., “Large Scale Distributed Deep Networks”, in NIPS 2012
Parallel Coordinate Descent
Parallel Coordinate Descent

(Stochastic) Coordinate Descent (CD):

For $t = 1, 2, \ldots$

Randomly pick an index i

$$w_i^{t+1} \leftarrow w_i^t - \left(\arg\min_{\delta} f(w^t - \delta e_i) \right)$$

A simplified version: each coordinate is updated by a gradient step

For $t = 1, 2, \ldots$

Randomly pick an index i

$$w_i^{t+1} \leftarrow w_i^t - \eta \nabla_i f(w^t)$$

How to parallelize it?
Synchronized Parallel Coordinate Descent:

For $t = 1, 2, \ldots$
- Randomly pick a subset $S \subset \{1, \ldots, n\}$ with size b
- $w_i^{t+1} \leftarrow w_i^t - \eta \nabla_i f(w^t)$ for all $i \in S$
Synchronized Parallel Coordinate Descent:

For \(t = 1, 2, \ldots \)
Randomly pick a subset \(S \subset \{1, \ldots, n\} \) with size \(b \)
\[w_i^{t+1} \leftarrow w_i^t - \eta \nabla_i f(w^t) \text{ for all } i \in S \]

Parallelization: let \(S = S_1 \cup S_2 \cup \cdots \cup S_k \),
\(j \)-th machine updates the variables in \(S_j \)
Will it converge?
Yes, if \(\eta \) is small enough

First discussed in Bradley et al., “Parallel coordinate descent for \(\ell_1 \)-regularized loss minimization”.
In ICML 2011
Asynchronous Parallel Coordinate Descent

The asynchronous parallel coordinate descent:

Each thread repeatedly performs the following updates:
For \(t = 1, 2, \ldots \)
- Randomly pick an index \(i \)
- \(\mathbf{w} \leftarrow \mathbf{w} - \eta \nabla f_i(\mathbf{w}) \)
Asynchronous Parallel Coordinate Descent

- The asynchronous parallel coordinate descent:

 Each thread repeatedly performs the following updates:
 For $t = 1, 2, \ldots$
 Randomly pick an index i
 $w \leftarrow w - \eta \nabla f_i(w)$

- Main trick: in shared memory systems, every thread can access the same parameter w

- First implemented in (Bradley et al., “Parallel coordinate descent for ℓ_1-regularized loss minimization”. In ICML 2011)

Coming up

- Next class: Support Vector Machines (SVM)

Questions?