
Toward Understanding Compiler Bugs in GCC and LLVM

Chengnian Sun Vu Le Qirun Zhang Zhendong Su
Department of Computer Science, University of California, Davis, USA

{cnsun, vmle, qrzhang, su}@ucdavis.edu

ABSTRACT
Compilers are critical, widely-used complex software. Bugs
in them have significant impact, and can cause serious dam-
age when they silently miscompile a safety-critical applica-
tion. An in-depth understanding of compiler bugs can help
detect and fix them. To this end, we conduct the first em-
pirical study on the characteristics of the bugs in two main-
stream compilers, GCC and LLVM. Our study is significant
in scale — it exhaustively examines about 50K bugs and
30K bug fix revisions over more than a decade’s span.

This paper details our systematic study. Summary find-
ings include: (1) In both compilers, C++ is the most buggy
component, accounting for around 20% of the total bugs and
twice as many as the second most buggy component; (2) the
bug revealing test cases are typically small, with 80% having
fewer than 45 lines of code; (3) most of the bug fixes touch a
single source file with small modifications (43 lines for GCC
and 38 for LLVM on average); (4) the average lifetime of
GCC bugs is 200 days, and 111 days for LLVM; and (5)
high priority tends to be assigned to optimizer bugs, most
notably 30% of the bugs in GCC’s inter-procedural analysis
component are labeled P1 (the highest priority).

This study deepens our understanding of compiler bugs.
For application developers, it shows that even mature pro-
duction compilers still have many bugs, which may affect
development. For researchers and compiler developers, it
sheds light on interesting characteristics of compiler bugs,
and highlights challenges and opportunities to more effec-
tively test and debug compilers.

CCS Concepts
•General and reference→Empirical studies; •Software
and its engineering → Software testing and debug-
ging;

Keywords
empirical studies, compiler bugs, compiler testing

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ISSTA ’16, July 18-22, 2016, SaarbrÃijcken, Germany
c© 2016 ACM. ISBN 978-1-4503-4390-9/16/07. . . $15.00

DOI: http://dx.doi.org/10.1145/2931037.2931074

1. INTRODUCTION
Compilers are an important category of system software.

Extensive research and development efforts have been de-
voted to increasing compilers’ performance and reliability.
However, it may still surprise application developers that,
similar to application software, production compilers also
contain bugs, and in fact quite many. Furthermore, com-
piler bugs impact application code, and even lead to severe
damage, especially when a buggy compiler is used to compile
safety-critical applications.

Different from most of the application bugs, compiler bugs
are difficult to recognize as they usually manifest indirectly
as application failures. For example, a compiler bug makes
a program optimized and transformed into a wrong exe-
cutable, and this bug can only manifest as the executable
misbehaves. Even worse, in most cases the application de-
veloper will first assume the misbehavior is caused by some
bug introduced by herself/himself, and it may take a long
time for her/him to realize that the compiler is the culprit.

In order to better understand compiler bugs, we conduct
the first empirical study on their characteristics. Although
there have been a number of empirical studies on software
bugs [6, 7, 17, 25, 27, 31, 36, 37], none focuses on compiler
bugs. For example, Lu et al. [17] study the characteristics
of concurrency bugs, Sahoo et al. [25] investigate the bugs
in server software, and Chou et al. [7] research the errors
in operating system kernels. In contrast, this paper ex-
amines the bugs of two mainstream production compilers,
GCC and LLVM, in total 39,890 bugs of GCC and 12,842
bugs of LLVM. In order to explore the properties of com-
piler bug fixes, we also examine 22,947 GCC revisions and
8,452 LLVM revisions, which are fixes to most of the bugs.
In particular, we attempt to investigate compiler bugs along
four central aspects:

(1) Location of Bugs. We compute the distribution of
bugs in compiler components and the source files. The data
shows that in both GCC and LLVM, the component C++
is always the most buggy one, with a defect rate twice as
much as the second most buggy component. In addition, we
find that most of the source files only contain one bug (i.e.,
60% for GCC and 53% for LLVM), and most of the top ten
buggy source files belong to the front end of C++.

(2) Test Cases, Localization and Fixes of Bugs. We
investigate the size of the test cases that trigger compiler
bugs, and find that on average GCC test cases have 32 lines
of code and those of LLVM have 29 lines. This observation
can guide random testing of compilers. For example, instead
of generating large simple test programs, compiler testing

http://dx.doi.org/10.1145/2931037.2931074

may be more effective by generating small, yet complex test
programs. Moreover, it confirms that most of the bugs can
be effectively reduced by techniques such as Delta [38] or C-
Reduce [24]. The fixes of compiler bugs are not big either,
which on average only touch 43 lines of code for GCC and
38 for LLVM. 92% of them involve fewer than 100 lines of
code changes, and 58% for GCC and 54% for LLVM involve
only one function. Our findings reveal that most of the bug
fixes are local. Even for optimizers, each bug is usually from
a single optimization pass.

(3) Duration of Bugs. We compute information on the
duration of bugs (i.e. the time between when a bug was filed
and when it was closed), and show that the average duration
of GCC bugs is 200 days and that of LLVM bugs is 111 days.
We also show that the GCC community confirms bugs faster
than LLVM but spends more time fixing them.

(4) Priorities of Bugs. The field priority of a bug
report is determined by developers for prioritizing bugs, ex-
pressing the order in which bugs should be fixed. We inves-
tigate the distribution of bugs over priorities. Of the GCC
bugs, 68% have the default P3 priority, and only 6.02% are
labeled as P1. We then study how priorities are correlated
with components. The inter-procedural analysis component,
ipa, of GCC is the most“impactful”as 30% of its bugs are la-
beled as P1. We also study how priorities affect the lifetime
of bugs. On average, P1 bugs are fixed the fastest, whereas
P5 bugs are fixed the slowest. However, for the rest, the fix
time is not strictly correlated with their priorities.

As a proof-of-concept demonstration of the practical po-
tentials of our findings, we design a simple yet effective pro-
gram mutation algorithm tkfuzz to find compiler crash-
ing bugs, by leveraging the second observation that bug-
revealing test programs are usually small. Applying tkfuzz
on the 36,966 test programs in the GCC test suite (with an
average of 32 lines of code each), we have found 18 crash-
ing bugs in GCC and LLVM, of which 12 have already been
fixed or confirmed.

The results presented in this paper provide further in-
sights into understanding compiler bugs and better guidance
toward effectively testing and debugging compilers. To en-
sure reproducibility and to benefit the community, we have
made all our data and code publicly available at http://
chengniansun.bitbucket.org/projects/compiler-bug-study/.

Paper Organization Section 2 describes the bugs used
in this study and potential threats to validity. Section 3
introduces general properties of these bugs, while Section 4
studies the distribution of compiler bugs in components and
source files respectively. In Section 5, we study bug-revealing
test cases and bug fixes. Section 6 then investigates the life-
time of bugs, and Section 7 studies the priorities of bugs
and their relation to other properties such as components
and duration. Section 8 presents our preliminary applica-
tion of the findings in this paper for compiler testing. We
discuss, in Section 9, how to utilize the findings in this pa-
per. Finally, Section 10 surveys related work, and Section 11
concludes.

2. METHODOLOGY
This section briefly introduces the compilers used in our

study, and describes how bugs are collected. We also discuss
limitations and threats to the validity of this study.

2.1 Source of Bugs
In this paper, we study the bugs in two mainstream com-

piler systems GCC and LLVM.

GCC GCC is a compiler system produced by the GNU
Project supporting various languages (e.g. C, C++, and For-
tran) and various target architectures (e.g. PowerPC, x86,
and MIPS). It has been under active development since the
late 1980s. The latest version is 5.3, which was released on
December 4, 2015.

LLVM LLVM is another popular compiler infrastructure,
providing a collection of modular and reusable compiler and
toolchain technologies for arbitrary programming languages.
Similar to GCC, LLVM also supports multiple languages
and multiple target architectures. The project started in
2000 and has drawn much attention from both industry and
academia. The latest version is 3.7.1, released on January
5, 2016.

Table 1: The information of the bugs used in this study.
Compiler Start End Bugs Revisions

GCC Aug-1999 Oct-2015 39,890 22,947
LLVM Oct-2003 Oct-2015 12,842 8,452

Collection of Bugs Our study focuses on fixed bugs. We
say a bug is fixed if its resolution field is set to fixed and
the status field is set to resolved, verified or closed in
the bug repositories of GCC and LLVM.

Identifying Bug Fix Revisions We then identify the
revisions that correspond to these fixed bugs. We collect the
entire revision log from the code repositories, and for each
revision, we scan its commit message to check whether this
revision is a fix to a bug.

GCC and LLVM developers usually add a marker in the
commit message following one of the two patterns below:

• “PR 〈bug-id〉”
• “PR 〈component〉/〈bug-id〉”

where the prefix “PR” stands for “Problem Report” and 〈bug-
id〉 is the id of the corresponding bug. We use these patterns
to link a revision to the bug that it fixes.

Table 1 shows the numbers of bugs and their accompanied
revisions that are used in our study. We analyze 50K fixed
bugs and 30K revisions in total, including 1,858 GCC and
1,643 LLVM enhancement requests.

2.2 Threats to Validity
Similar to other empirical studies, our study is potentially

subject to several threats, namely the representativeness of
the chosen compilers, the generalization of the used bugs,
and the correctness of the examination methodology.

Regarding representativeness of the chosen compilers, we
use GCC and LLVM, which are two popular compiler projects
written in C/C++ with multiple language frontends, a set of
highly effective optimization algorithms and various archi-
tecture backends. Both are widely deployed on Linux and
OS X operating systems. We believe these two compilers
can well represent most of the traditional compilers. How-
ever, they may not well reflect the characteristics of Just-
In-Time compilers (e.g., Java Hotspot virtual machine) or
interpreters (e.g., Perl, Python).

Regarding the generalization of the used bugs, we uni-
formly use all the bug reports satisfying the selection crite-

http://chengniansun.bitbucket.org/projects/compiler-bug-study/
http://chengniansun.bitbucket.org/projects/compiler-bug-study/

20
00

-0
7-

11

20
01

-1
1-

23

20
03

-0
4-

07

20
04

-0
8-

19

20
06

-0
1-

01

20
07

-0
5-

16

20
08

-0
9-

27

20
10

-0
2-

09

20
11

-0
6-

24

20
12

-1
1-

05

20
14

-0
3-

20

20
15

-0
8-

02

0

200

400

600
3.0 3.2 3.3 3.4 4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5.2

N
u

m
b

er
o
f

B
u
g
s

new
fixed

rejected
unconfirmed

(a) GCC.

20
03

-1
0-

24

20
04

-0
5-

11

20
04

-1
1-

27

20
05

-0
6-

15

20
06

-0
1-

01

20
06

-0
7-

20

20
07

-0
2-

05

20
07

-0
8-

24

20
08

-0
3-

11

20
08

-0
9-

27

20
09

-0
4-

15

20
09

-1
1-

01

20
10

-0
5-

20

20
10

-1
2-

06

20
11

-0
6-

24

20
12

-0
1-

10

20
12

-0
7-

28

20
13

-0
2-

13

20
13

-0
9-

01

20
14

-0
3-

20

20
14

-1
0-

06

20
15

-0
4-

24

20
15

-1
1-

10

0

100

200

300

400
1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6

N
u

m
b

er
o
f

B
u
g
s

new
fixed

rejected
unconfirmed

(b) LLVM

Figure 1: The overall evolution history of the bug repositories (in months). The plot filled in gray background shows the
new bug reports submitted every month. The blue dashdotted plot shows the number of bugs fixed every month. The red
dashed plot shows the number of bugs that are resolved as not fixed (e.g. invalid, duplicate, worksforme or wontfix). The
black curve shows the number of bug reports per month which have not been confirmed yet. Clearly there is an increasing
trend of unconfirmed bugs for LLVM.

ria stated in Section 2.1 with no human intervention. For
those unresolved or invalid bugs, we believe that they are
not likely as interesting as the bugs investigated in this pa-
per. As for the identification of revisions containing bug
fixes, based on the interaction with the GCC and LLVM
developers on a large number of bugs we reported before,
GCC developers usually link the revisions and the bugs ex-
plicitly, while LLVM developers do less often. Given the
large number of GCC and LLVM revisions, we believe that
the analysis results should be representative.

Regarding the correctness of the analysis methodology,
we have automated every analysis mentioned in this paper.
We also have hands-on experience on analyzing bug report
repositories and code revision histories from our previous
studies.

3. GENERAL STATISTICS
This section shows the general statistics of the two bug

repositories. Figure 1 shows the overall evolution of GCC
and LLVM’s bug repositories. In particular, it shows the
number of bugs reported, rejected or fixed each month. It
also shows the number of bug reports that have never been
confirmed. Each vertical dashed line represents the date
of a compiler release, and the label on the top the version
number.

The trends of the plots for GCC are relatively stable in
these years compared to those of LLVM. After gaining its
popularity recently, LLVM has drawn much more atten-

Table 2: The number and the percentage of bug reports
revolved as invalid, worksforme or wontfix.

invalid worksforme wontfix

GCC 7,072/10.4% 1,151/1.7% 1,463/2.2%
LLVM 1,639/6.7% 717/2.9% 593/2.4%

tion than before and more bug reports are being submit-
ted monthly. However, the bug-fixing rate (indicated by the
blue dashdotted fixed curve) does not increase much and
more bugs are being left as unconfirmed (shown as the black
unconfirmed curve), which is likely due to limited human
resources as we were told by active members in the LLVM
community that some Apple developers were pulled into the
Swift project.1 This may give external bug reporters the
impression that the community is not as responsive as GCC
although bugs are fixed as regularly as before.

3.1 Rejected Bug Reports
Table 2 shows the information on the bugs which are re-

solved as invalid, worksforme or wontfix. An invalid bug
report is one in which the associated test program is invalid
(for example, containing undefined behaviors, a bug in an-
other software, misunderstanding of the language standard,
misuse of standard libraries), or the reported “anomalous”
behavior is in fact deliberate. If a bug described in a report
cannot be reproduced, this report is labeled as worksforme.

1https://developer.apple.com/swift/

A bug report is resolved as wontfix if the affected version,
component or library of the compiler is not maintained al-
though the reported bug can be confirmed.

3.2 Duplicate Bug Reports
Reporting bugs in a bug tracking system is uncoordinated.

Different people may file multiple reports on the same bug.
In this case, the latter bug reports are referred to as dupli-
cates.

Table 3: Distribution of duplicate bug reports. The first row
lists the number of duplicate bugs, and the second shows the
number of bugs with the given number of duplicates.

(a) Duplicate bugs of GCC.

#Duplicate 0 1 2 3 4 5 ≥6
#Report 35,933 2,924 596 215 98 41 83

(b) Duplicate bugs of LLVM.

#Duplicate 0 1 2 3 4 5 ≥6
#Report 12,157 570 72 17 13 5 8

Table 3 shows the information on duplicate bug reports
in the GCC and LLVM bug repositories. 9.9% of GCC
bugs and 5.3% of LLVM bugs have duplicates. The du-
plicate rates are similar to other open source projects such
as Eclipse, OpenOffice and Mozilla [30].

The GCC bug with the most duplicates is #4529 that has
60 duplicates. The compiler crashes when it is compiling the
Linux kernel 2.4. The LLVM bug with the most duplicates is
#2431 with 15 duplicates. It is a meta-bug report to manage
all the crashing bugs related to the component gfortran.

3.3 Reopening Bugs
A bug report is labeled as fixed if a revision has been com-

mitted to fix the bug and passed certain test cases. How-
ever, sometimes the bug may be found to be not correctly
or fully fixed later. In this case, the bug report will be re-
opened. There is another scenario of reopening a bug. If the
bug repository administrator rejects a bug report first as he
deems the bug invalid (e.g., not reproducible) and later finds
it valid, then the bug report will be reopened.

Both scenarios are normal but undesirable. Reopening a
bug could mean careless bug fixes, inadequate communica-
tion between developers and testers or users, or inadequate
information to reproduce the bug [40]. It can even become a
bad practice if a bug report is reopened more than once, as
this behavior is usually regarded as an anomalous software
process execution [4, 28], and should be avoided in software
development and management process.

Table 4: Breakdown of reopened bugs. The first row is the
number of reopened times, and the second is the percentage
of the corresponding bugs.

(a) Reopened bugs of GCC.

#Reopen 0 1 2 3 4 8
% 96.95 2.85 0.15 0.04 0.01 0.003

(b) Reopened bugs of LLVM.

#Reopen 0 1 2 3
% 94.596 5.007 0.374 0.023

Table 4 shows the reopening information of bugs in GCC
and LLVM. Nearly 97% of the GCC bugs and 94% of the

c+
+
ta

rg
et

for
tra

n

tre
e-o

pt

m
id

dle-
en

d

rtl
-o

pt

lib
std

c+
+ c

boot
str

ap jav
a

0.05

0.1

0.15

0.2

F
ra

ct
io

n
o
f

B
u

g
s

(a) The top ten buggy components out of 52 in GCC. The most
buggy component is C++, containing 22% of the 39,890 bugs,
nearly twice as buggy as the second one. And these ten compo-
nents account for 79% of the GCC bugs.

new
-b

ugs
c+

+

fro
nte

nd

llv
m

-co
deg

en

all
-b

ugs

bac
ke

nd-x
86

c+
+11

co
m

m
on

-co
deg

en

sc
ala

r-o
pt

sta
tic

-a
naly

ze
r

0.05

0.1

0.15

0.2

F
ra

ct
io

n
o
f

B
u

g
s

(b) The top ten buggy components out of 96 in LLVM. The most
buggy component is new-bugs, containing 23% of the 12,842 bugs.
The second component is C++, 14% and the third is Frontend
9%. And these ten components account for 79% of the LLVM
bugs.

Figure 2: Distribution of Bugs in Components

LLVM bugs are fixed directly without being ever reopened.
The most frequently reopened bug of GCC is #299752 (re-
opened eight times). It is a meta bug to track Fortran bugs
revealed by compiling the CP2K program.3 Another GCC
bug #527484 was reopened three times before it was fixed.
It is related to the new feature decltype of C++11 stan-
dard, and took developers several attempts to correctly fix
this bug.

4. LOCATION OF BUGS
This section answers the following question: Where are

the bugs? Subsection 4.1 shows how the bugs are distributed
in various compiler components, while Subsection 4.2 shows
how bugs are distributed in different source files.

4.1 Distribution of Bugs in Components
Figure 2 shows the distribution of bugs in compiler com-

ponents. We only show the top ten buggy components for
each compiler, accounting for the majority of the bugs (79%

2https://gcc.gnu.org/bugzilla/show bug.cgi?id=29975
3http://www.cp2k.org/
4https://gcc.gnu.org/bugzilla/show bug.cgi?id=52748

https://gcc.gnu.org/bugzilla/show_bug.cgi?id=29975
http://www.cp2k.org/
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=52748

Table 5: The top 10 buggy files of GCC and LLVM.
(a) GCC.

File # Description

cp/pt.c 817 C++ templates
cp/decl.c 638 C++ declarations and variables
cp/parser.c 595 C++ parser
config/i386/i386.c 569 code generation on IA-32
cp/semantics.c 457 semantic phase of parsing C++
fortran/resolve.c 452 type resolution for Fortran
cp/cp-tree.h 415 parsing and type checking C++
fold-const.c 386 constant folding
cp/typeck.c 374 type checking C++
cp/call.c 354 method invocations of C++

(b) LLVM.

File # Description

SemaDecl.cpp 301 semantic analysis for declarations
DiagnosticSemaKinds.td 268 definitions of diagnostics messages
SemaExpr.cpp 232 semantic analysis for expressions
SemaDeclCXX.cpp 221 semantic analysis for C++ declarations
X86ISelLowering.cpp 194 lowering LLVM code into a DAG for X86
SemaTemplate.cpp 127 semantic analysis for C++ templates
SemaExprCXX.cpp 124 semantic analysis for C++ expressions
SemaOverload.cpp 123 semnatic analysis for C++ overloading
lib/Sema/Sema.h 122 semantic analysis and AST building
SemaTemplateInstantiateDecl.cpp 119 C++ template declaration instantiation

for GCC and 79% for LLVM). These components touch all
critical parts of compilers: front end (e.g. syntactic and se-
mantic parsing), middle end (e.g. optimizations) and back
end (e.g. code generation).

As the plots show, C++ is the most buggy component in
GCC, accounting for around 22% of the bugs. It is much
more buggy than the other components as the bug rate of
the second most buggy component is only half. In LLVM,
bug reports can be submitted without specifying their com-
ponents. Therefore a large number of bug reports are closed
with the component new-bugs. However, based on the dis-
tribution of bugs in source files (which will be discussed in
the next section), C++ is also the most buggy component
in LLVM.

One possible explanation is that C++ has many more
features than the other programming languages, support-
ing multiple paradigms (i.e. procedural, object-oriented, and
generic programming). It is surprising that most of the re-
search and engineering efforts have been devoted to testing
or validating C compilers [3, 11, 12, 13, 14, 23, 29, 34, 35]
but little on C++, although C++ is one of the most pop-
ular programming languages in industry (among top three
according to the TIOBE index [33]).

4.2 Distribution of Bugs in Files
This section analyzes the distribution of bugs in the source

files (i.e., how many bugs in each source file). We exclude
the source files of test cases as they contribute nothing to
the core functionalities of the compilers.

1 5 10 15 20 25 30

0

0.1

0.2

0.3

0.4

0.5

0.6 GCC(1, 60%)

GCC(30, 0.1%)

LLVM(1, 53.2%)

LLVM(30, 0.3%)

Number of Bugs

F
ra

ct
io

n
o
f

F
il
es

GCC

LLVM

Figure 3: The figure shows the fraction of source files with
a given number (≤ 30) of bugs for GCC and LLVM. The
files with more than 30 bugs are skipped and their fraction
is approximately monotonically decreasing. For GCC, there
are 5,039 files in total, and the file with the most bugs is
‘cp/pt.c’ (with 817 bugs); while for LLVM, there are 2,850
files in total, and the most buggy is ‘SemaDecl.cpp’ (with
301 bugs).

1 10 100 1 000 10 000

0

0.25

0.5

0.75

1

25 50

Lines of Code of Regression Test Case

F
ra

ct
io

n
o
f

B
u
g
s

GCC

LLVM

(a) This graph shows the empirical cumulative distribution func-
tion of the sizes of the test cases that trigger the bugs in GCC
and LLVM,

(b) The statistics of the lines of code in regression test cases.

Mean Median SD Min Max

GCC 32 21 75 1 5,554
LLVM 29 16 59 1 916

Figure 4: Size of regression test cases.

Figure 3 shows the fraction of source files with a given
number of bugs, where the x-axis is the number of bugs,
and the y-axis is the fraction of the source files containing
that number of bugs. It depicts a phenomenon that half of
the source files only contain one bug (60% of GCC and 53%
of LLVM), and quite few files have a large number of bugs.

The plots in Figure 3 only show the files with no more
than 30 bugs. In order to describe the other extreme of the
distribution, Table 5 shows the top ten most buggy source
files. Consistent with the distribution of bugs in components
in Figure 2, the source files of the C++ component account
for most bugs. For example, as perhaps the most complex
feature of C++, the C++ template is the most buggy file in
GCC. This skewness of bugs again implies that we should
devote more efforts to testing C++ compilers, considering
that C++ is one of the most wide-used programming lan-
guages.

5. REVEALING AND FIXING BUGS
In this section, we investigate the properties of bug-revealing

test cases and the bug fixes.

5.1 Size of Bug-Revealing Test Cases
Figure 4a shows the empirical cumulative distribution func-

tion over the sizes of the test cases triggering the bugs of
GCC and LLVM. As shown, most of the test cases 95%

vi

X

vi+1

b

a test program t

vi+2

b

r

Figure 5: Compiler regression bugs.

are smaller than 100 lines of code, and more than 60% are
smaller than 25 lines of code.5 Table 4b shows the statistics
including mean, median and standard deviation (SD).

These test cases are collected from the test suites of GCC
and LLVM. For a new bug, besides the fix, the developer of-
ten creates a regression test case by extracting the attached
bug triggering code in the bug report. Meanwhile a bug la-
bel is also created by concatenating a prefix pr and an infix
bug-id, which is later used as the file name of the test case
or inserted into the test case as a comment. For example,
the test case pr14963.c is the regression test case for the
bug 14963.

By identifying the bug labels, we have collected 11,142
test cases of GCC and its size distribution is shown as the
blue solid plot in Figure 4. We only collect 347 of LLVM,
and this is why its plot (i.e., the red dashed one) is not as
smooth that of GCC. However, the overall trend is similar
in the two plots, and supports the conclusion stated at the
beginning of this section.

This observation can be leveraged for improving the effec-
tiveness of random testing for compiler validation. A ran-
dom program generator such as Csmith [35] or Orion [11]
should focus on generating small but complex test programs
rather than big but simple ones.

5.2 Time to Reveal Compiler Regressions
A compiler regression is a bug which is introduced by a

revision, breaking the functionality of a feature. Consider
the illustration in Figure 5. Let r be the committed revision
between two consecutive versions vi and vi+1 in the source
code repository. We say revision r introduces a regression
bug b into version vi+1

In this section, we investigate how much time it takes for
a regression bug to be uncovered by testing. For the re-
gression bug b, its regression revealing time can be obtained
by computing the time span between when the revision r
introducing b is committed and when the bug report of b
is filed. As GCC provides richer meta-information in its
bug repository than LLVM, in this study we only focus on
the regression bugs of GCC. The following describes how we
collect the necessary information for this study.

Identifying Regression Bug Reports If a bug report is
confirmed by a GCC developer as a regression, the
summary of the bug report will be prefixed with a
keyword regression.

Identifying Culprit Revisions GCC developers often link
the culprit revisions with the regressions as additional

5We do not exclude comments from counting in this paper.

1 10 100 1 000
0.2

0.4

0.6

0.8

1

20

Time to Reveal Regressions (in days)

F
ra

ct
io

n
o
f

B
u
g
s

GCC

(a) This graph shows the empirical cumulative distribution func-
tion of the time interval between when a regression is introduced
and when it is triggered.

(b) The statistics of the time to reveal regressions.

Mean Median SD Min Max

GCC 163 20 335 1 3492

Figure 6: Time to reveal regression bugs.

1 10 100 1 000 10 000
0

0.2

0.4

0.6

0.8

1

(100, 92%)

Number of Lines of Code in a Fix

F
ra

ct
io

n
o
f

B
u

g
s

GCC

LLVM

(a) This graph shows the number of lines of code in a bug fix.
The empirical cumulative distribution curves of GCC and LLVM
are almost the same. And most of the bug fixes (92%) contain
fewer than 100 lines of code.

(b) The statistics of the lines of code modification in bug fixes.

Mean Median SD Min Max

GCC 43 10 264 1 20028
LLVM 38 11 161 1 5333

Figure 7: Lines of code modification in bug fixes.

comments to the bug reports. Although these corre-
lations are only expressed in natural languages, they
follow certain frequent patterns. For example, given a
culprit revision r, the link can be written as started
with r, caused by r, or regressed with r.

We first collect bug reports of which the summaries con-
tain the word regression, and then search the comments in
these reports for the patterns of culprit revisions. In total,
we have collected 1,248 regression bugs.

Figure 6 shows the empirical cumulative distribution func-
tion of the time interval between when a regression is intro-
duced and when it is triggered. On average it takes 163 days,
but 50% of these regressions only need 20 days to uncover.

5.3 Size of Bug Fixes
We consider all the 22,947 revisions of GCC and 8,452

revisions of LLVM and exclude the non-functional files (e.g.,
change logs, documents, executables, test cases) in revisions.

1 10 100 1 000

0.6

0.7

0.8

0.9

1

2 3 45

Number of Functions in a Fix

F
ra

ct
io

n
o
f

B
u

g
s

GCC

LLVM

(a) This graph shows the number of functions modified in a bug
fix. The empirical cumulative distribution curve indicates that
over half of the investigated bugs only involve one function (i.e.,
58% for GCC, and 54% for LLVM), and most of the bug fixes
(90% or so) involve no more than 5 functions.

(b) The statistics of the number of functions in bug fixes.

Mean Median SD Min Max

GCC 2.7 1 7.0 1 434
LLVM 3.4 1 18.4 1 972

Figure 8: Number of functions modified in bug fixes.

5.3.1 Lines of Code
We obtain the difference between two versions from the

two version control systems respectively, and count the lines
of code modification made to the source files.

As Figure 7a shows, 92% of the bug fixes contain fewer
than 100 lines of code, and 50% of the bug fixes contain
fewer than 10 lines. This indicates that most of the bugs
only touch a small portion of the compiler code. Table 7b
shows the statistics of the sizes of the bug fixes. On av-
erage, the number of lines of code modified in a bug fix is
approximately 40, and the median is about 11.

5.3.2 Number of Functions
We investigate the number of functions modified in a bug-

fix. The information is acquired by (1) retrieving the changed
source files at a specific revision, (2) parsing the files, and (3)
locating functions of which the lines in files intersect with
the line numbers recorded in the version control systems.

Figure 8a shows the relation between the number of func-
tions revised in a revision and the fraction of bugs. Around
90% of the bugs involve at most 5 functions in GCC and
LLVM. Moreover, more than 58% of the GCC bugs and 54%
of LLVM only involve one single function. Table 8b shows
the summary statistics. In terms of number of functions,
the median is one and the mean is no more than three.

5.3.3 Discussion
The data — the lines of code and number of functions

modified in a revision — imply that a compiler bug is usu-
ally not so complex that a severe collateral effect is imposed
on multiple functions. Considering the plots and tables in
Figures 7 and 8, we can conclude that compiler bugs are
often local. Although compilers are intricate (such as the
complex optimization algorithms), the bug fixes only have
limited impact on the entire code-base. On the other hand,
this indirectly demonstrates that both compilers are well
designed with clear modularity and limited coupling among
modules.

1 10 100 1 000 10 000

0.2

0.4

0.6

0.8

1

7 27

Duration of Bugs (in days)

F
ra

ct
io

n
o
f

B
u
g
s

GCC

LLVM

(a) This graph shows the empirical cumulative distribution func-
tion of bugs through time.

(b) The statistics of the duration of bugs.

Mean Median SD Min Max

GCC 200 28 448 1 5686
LLVM 111 7 268 1 2967

Figure 9: This figure shows the statistics of the duration
of bugs. Figure (a) is the emprical cumulative distribution
function of the duration of bugs, and Table (b) displays the
statistics of the duration. Averagely, a bug is fixed within
a year. Comparatively, GCC takes longer time to fix bugs
than LLVM.

6. DURATION OF BUGS
This section investigates how bugs are distributed through

time. A duration spans the time when a bug report is filed
in the bug tracking system to the time when the bug is
fixed. Ideally, a bug should be fixed right after it is reported,
which is zero-day duration. However in reality due to limited
resource and various constraints, a bug usually takes time,
sometimes years, to be fixed.

6.1 Collecting Duration Data
In the bug tracking systems of GCC and LLVM, when a

bug report is filed, its creation date is saved in the database,
which can be used as the birth date of the bug. The other
field of date type in a bug report is the modification field,
which records the date of the last revision to the report.
However, it cannot be used as the killed date of the bug,
as even after a bug is resolved as fixed, the developers may
still edit the bug report, such as adjusting target version or
adding comments. Hence, using the time interval between
the creation date and the modification date is inaccurate.
For example, the third bug6 of GCC was reported on 1999-
08-26, the last modification was on 2013-07-23, and therefore
the time interval is more than ten years. However, based on
its revision history,7 the bug was already fixed on 2001-01-
08, so the duration of bug should be two years, but not ten
years.

In order to compute the bug lifetime information accu-
rately, we retrieve both the bug reports and the bug history
information from the two bug tracking systems. For the
start date of a bug, we use the creation date recorded in the
bug report. For the end date of the bug, we scan its revision
history in reverse chronological order, and find the date of

6https://gcc.gnu.org/bugzilla/show bug.cgi?id=3
7https://gcc.gnu.org/bugzilla/show activity.cgi?id=3

https://gcc.gnu.org/bugzilla/show_bug.cgi?id=3
https://gcc.gnu.org/bugzilla/show_activity.cgi?id=3

the last revision to set the resolution field to fixed. Taking
the bug #3 as an example, its duration is the time interval
between its creation date 1999-08-26 in the report and the
revision date 2001-01-08 to set it as fixed.

6.2 Duration Analysis
Figure 9 shows the empirical cumulative distribution func-

tion of bugs over time, and the statistics of the bug duration.
On average, the bugs of GCC are fixed within 111 days, and
those of LLVM are fixed in 98 days. The medians of dura-
tions are 28 days and 7 days respectively.

Table 6 further breaks down the duration into two seg-
ments, i.e., the duration between when a bug is reported
and when it is confirmed, and the duration between it is
confirmed and fixed. On average, it takes less time for GCC
to confirm a bug but longer time to fix a bug than LLVM.

Table 6: The breakdown of the duration.
(a) Duration of bugs between when they are reported and con-
firmed.

Mean Median SD Min Max

GCC 61 2 205 1 3816
LLVM 95 5 245 1 2967

(b) Duration of bugs between when they are confirmed and fixed.

Mean Median SD Min Max

GCC 139 4 396 1 5427
LLVM 17 1 113 1 2446

7. PRIORITIES OF BUGS
This section first studies the priority of compiler bugs,

and then investigates the correlation between priorities and
other types of bug information, i.e., compiler components
and bug duration.

7.1 Priority Distribution
The field priority of a bug report is determined by de-

velopers for prioritizing their bugs, expressing the order in
which bugs should be fixed by the developers. GCC has five
levels: P1, P2, P3, P4 and P5. P1 is the most urgent level
and bugs of this level should be fixed soon, and P5 has the
lowest priority. P3 is the default priority level. Any new bug
report is initially labeled as P3 by default, then the triage
team will determine its priority based on the impact of the
bug on users and available human and time resource [32].
LLVM developers do not prioritize bugs explicitly in the
bug repository, so we only conduct priority-related analyses
on the GCC data set.

Table 7: The priority distribution of the GCC bugs.
P1 P2 P3 P4 P5

6.02% 22.92% 68.24% 1.82% 0.99%

Table 7 lists the breakdown of the five priority categories
in GCC. As the default priority, P3 accounts for over half
of the bugs, whereas P4 and P5 are the extreme cases with
the fewest bugs.

7.2 Priority and Component Correlation
We study the correlation between priorities and compo-

nents of bugs, that is, which compiler component tends to

be more important and thus its bugs are more severe than
the other components.

Given a compiler component c and a priority level p ∈
[1, 5] corresponding to 〈P1, P2, P3, P4, P5〉, let R be the
set of the bugs in c. We define the following function to
compute the fraction of the bugs with the given priority p
among all the bugs in the component c.

ψ(c, p) =
|{r ∈ R|the priority of r is p}|

|R|
We then define a total order between components in the

order of their fractions of five different priorities.

Θ(c1, c2) = θ(c1, c2, 1)

θ(c1, c2, p) =

> if ψ(c1, p) > ψ(c2, p)

< else if ψ(c1, p) < ψ(c2, p)

= else if p = 5

θ(c1, c2, p+ 1) otherwise

Basically, if a component c1 has a larger fraction of bugs with
high priorities than c2, then c1 is greater than c2. Bugs in
a “large” component are more likely to be prioritized higher
than those in “small” components, and should draw more
attention for testing and validation.

ip
a

gc
ov

-p
ro

file

tre
e-o

pt

m
id

dle-
en

d
deb

ug

rtl
-o

pt

boot
str

ap ltoc+
+pch

sa
niti

ze
r

lib
mudflap

lib
itm
ta

rg
et

re
gr

es
sio

n
0

0.5

1

P1 P2 P3 P4 P5

Figure 10: Correlation between priorities and components

We rank all the components of GCC in the descending
order of Θ. Figure 10 shows the top 15 components. The
first component is ipa, which includes the inlining and other
inter-procedural optimizations and the infrastructure sup-
porting them. 30% of its bugs are labeled as P1. This ratio
is significantly higher than the second component, which is
only 14%. Many other optimization components also ap-
pear in this list, such as tree-opt (optimizations over high-
level tree representation), middle-end (optimizations over
GIMPLE representation [9]), rtl-opt (optimizations over
low-level architecture-neutral register transfer language rep-
resentation [10]), lto (link-time optimization).

7.3 Priority and Duration Correlation
This subsection studies the correlation between priorities

and the lifetime of bugs. Intuitively, bugs with higher prior-
ities should be fixed in a shorter time than those with lower
priorities. The results in this section partially invalidate this
hypothesis.

Table 11a lists the statistics of the lifetime of bugs for the
five priority levels. Each row shows the information of all the
bugs that are labeled with a certain priority. For example,

(a) The statistics of the duration of bugs for different priority
levels in GCC.

Priority Mean Median SD Min Max

P1 72 22 149 1 2196
P2 262 49 502 1 4937
P3 185 21 420 1 5686
P4 268 48 473 1 3326
P5 450 170 617 1 3844

1 2 3 4 5

0.2

0.4

0.6

0.8

Duration of Bugs (in months)

F
ra

ct
io

n
o
f

B
u
g
s P1 P2 P3 P4 P5

(b) The cumulative breakdown of the bug lifetime for different
priorities within 5 months

Figure 11: The correlation between duration and priorities
of GCC bugs.

the second row shows the mean, median and standard devia-
tion of all the bugs of P1. Additionally, we performed t-test
between every two priorities, and validated that except the
difference between P2 and P4 the differences between all
others are statistically significant with (p < 0.001).

From a different perspective, Figure 11b graphically shows
the cumulative breakdown of the bug lifetime for each pri-
ority level within five months. For example, 79% of P1 bugs
are fixed within three month, 58% for P2, 68% for P3, 59%
for P4 and 38% for P5.

Both the table and the figure demonstrate that the time
spent in fixing bugs does not strictly follow the order of their
priorities. On average, only the bugs with P1 are fixed much
faster than the other priorities, and the bugs with P5 take
the most time among all the priorities. The P2 bugs take
more time than P3. The P1 bug with the maximum lifetime
is Bug #25130.8 It was reopened twice, and took 2,196 days
in total to resolve.

8. A PRELIMINARY APPLICATION
This section presents a proof-of-concept application of our

findings. Specifically, we have designed tkfuzz, a simple yet
effective program mutation algorithm for compiler testing,
by leveraging the observation in Subsection 5.1 that bug-
revealing test cases are usually small. Moreover, as indicated
in Subsection 4.1 that C++ is the most buggy component,
our algorithm works for C++ too, the first research effort
on C++ compiler testing.

tkfuzz Given a test program represented as a sequence
of tokens, tkfuzz randomly substitutes an identifier token
(e.g., variable or function names) with another different iden-
tifier token in the token list. Then the mutated programs
are used to find crashing bugs in compilers.

8https://gcc.gnu.org/bugzilla/show activity.cgi?id=25130

Table 8: Bugs Found by tkfuzz
Bug ID Component Status

1 LLVM-24610 frontend fixed
2 LLVM-24622 frontend fixed
3 LLVM-24797 new-bugs –
4 LLVM-24798 c++ fixed
5 LLVM-24803 new-bugs –
6 LLVM-24884 new-bugs –
7 LLVM-24943 new-bugs –
8 LLVM-25593 new-bugs –
9 LLVM-25634 new-bugs –
10 GCC-67405 target fixed
11 GCC-67581 c++ fixed
12 GCC-67619 middle-end fixed
13 GCC-67639 middle-end confirmed
14 GCC-67653 middle-end fixed
15 GCC-67845 c++ fixed
16 GCC-67846 c++ fixed
17 GCC-67847 c++ fixed
18 GCC-68013 tree-opt fixed

We applied tkfuzz to the GCC test suite to generate mu-
tated programs. The test suite contains 36,966 test pro-
grams (24,949 for C and 12,017 for C++); the average size
of each test program is only 32 lines of code, including blank
lines and comments. Our testing was done on a quad-core
Intel 3.40 GHz machine. We have reported 18 bugs, of which
12 have already been accepted or fixed. Table 8 shows the
details of these bugs. Note that five bugs are in the two
compilers’ C++ components, confirming our observation in
Subsection 4.1. Although this is a simple application, it
clearly demonstrates the practical potentials of our findings
in this paper.

9. CALL FOR ACTIONS
We have shown that compiler bugs are common: there

is a large number of them. This section discusses several
directions that are worthy of pursuing based on the analysis
results presented earlier.

Buggy C++ Components It is not very surprising that
C++ components are the most buggy in both compilers, as
C++ is one of the most complex programming languages.
However, it is surprising that little research has been di-
rected at testing C++. Although it is more difficult than
testing C compilers [11, 35], it is very worthy because C++ is
used as widely as C. Furthermore, based on the most buggy
files of the two compilers (cf. Table 5), we can take gradual
steps toward testing C++ by starting from the most buggy
features such as templates and overloaded methods.

Small Regression Tests Figure 4 shows the size of the
regression test cases, which are extracted from the test pro-
grams attached to bug reports. 95% of them have fewer
than 100 lines of code, and more than 50% fewer than 25
lines of code. This interesting (and surprising) finding indi-
cates that randomized compiler testing techniques can lever-
age this fact by producing small but complex test programs.
This not only can stress test compilers, but may also en-
hance testing efficiency. Our preliminary application of this
finding in Section 8 also demonstrates its potential impact.

Locality of Fixes Section 5.3 shows that most of the
bug fixes only touch one function (58% for GCC and 54%
for LLVM), and they tend to be local. Thus, it would be
promising to investigate techniques that can direct testing

https://gcc.gnu.org/bugzilla/show_activity.cgi?id=25130

at a chosen component, rather than treating the compiler as
a monolithic whole.

Duration of Bugs Section 6 shows that the average time
to triage and resolve a compiler bug is a few months. This
may be because compilers are very complex and compiler
bugs are difficult to resolve. One has to understand the root
cause of a bug and decide how to fix it; at the same time,
it is important not to overlook certain cases and avoid re-
gressions. Thus, practical techniques are needed to aid com-
piler developers with such tasks. Lopes et al.’s recent work
on Alive [16] can be viewed as a relevant example in this
direction — it helps developers write and debug peephole
optimizations.

10. RELATED WORK
We survey two lines of closely related research.

Empirical Studies on Bugs Much work has been de-
voted to studying the characteristics of various bugs in vari-
ous software systems. Chou et al. [7] conducted an empirical
study on approximately one thousand operating system er-
rors. The errors were collected by applying static automatic
compiler analysis to Linux and OpenBSD kernels. They
found that device drivers had much more bugs than the
rest of the kernels. Lu et al. [17] studied the characteris-
tics of concurrency bugs by examining 105 concurrency bugs
randomly selected from four real-world programs (MySQL,
Apache, Mozilla and OpenOffice). Their findings further
the understanding of concurrency bugs and highlight future
directions for concurrency bugs detection, diagnosis and fix-
ing. Sahoo et al. [25] analyzed 266 reported bugs found in
released server software, such as MySQL, Apache, and SVN.
Based on the findings, they discussed several implications
on reproducing software failures and designing automated
diagnosis tools for production runs of server software. Li
et al. [15] analyzed the trend of bugs by applying natural
language text classification techniques to about 29,000 bugs
of Mozilla and Apache. Thung et al. [31] studied the bugs in
machine learning systems and categorized them based on the
characteristics of bugs. Song et al. [26] studied performance
bugs in open source projects and based on their character-
istics proposed a statistical debugging technique.

Our work complements these previous studies, with a spe-
cific focus on compiler bugs. Different from application bugs,
compiler bugs can be much difficult to notice and debug, and
for application developers, compilers are usually assumed to
be bug-free. In this paper, we show that compiler bugs are
also common, and more than 65% bugs of GCC and LLVM
are reported by external users. For researchers working on
compiler testing and validation, we show that certain com-
piler components have higher bug rates than the others, and
should be paid more attention to.

Compiler Testing Due to compilers’ complexity, testing
is still the major technique to validate the correctness of
production compilers. In addition to internal regression test
suites, compiler developers can also use external commercial
conformance testing suites [1, 22] to further test whether
compilers conforms to language standards or specifications.
However, such manual test suites may still be inadequate
and therefore recently researchers have started to employ
randomized testing to further stress test compilers.

One of the most successful approaches is Csmith [5, 24,
35], which has found several hundred bugs in GCC and

LLVM. Compared to traditional random C program genera-
tors which target at compiler crashes, Csmith is able to gen-
erate valid C programs by avoiding introducing undefined
behaviors, hence capable of finding mis-compilation bugs.
It has also been applied to test virtual machines [18], CPU
emulators [19] and static analyzers, such as Frama-C [8].

Another successful compiler testing technique is Equiva-
lence Modulo Inputs (EMI) [11, 12, 13]. It has found several
hundred bugs in GCC and LLVM. EMI is a general compiler
testing methodology to derive semantically equivalent vari-
ants from existing programs. It introduces an alternative
view of differential testing. Given a program P , instead of
verifying the consistency between executables compiled by
multiple compilers or multiple versions of a compiler on P , it
tests the consistency w.r.t. an input I between executables
from P and P ′ compiled by the same compiler, where P ′ is
an EMI variant of P w.r.t. I.

A considerable amount of effort has also been put on test-
ing different compilers or different components in compilers.
Zhao et al. proposed a tool JTT to test the EC++ embed-
ded compiler [39]. Nagai et al. [20, 21] proposed a technique
to test the arithmetic optimizers of compilers. CCG is an-
other random C program generator targets compiler crash-
ing bugs [2]. Sun et al. [29] proposed an approach to finding
bugs in compiler warning diagnostics.

Our study highlights that in GCC and LLVM, C++ has
the highest bug rate of all the compiler components, much
higher than the C component. It would be interesting to
devise effective testing strategies, theories and tools to test
C++ compilers, as it is also a popular but more complex
programming language widely used in industry. We also
analyze the statistics of bug revealing test cases and bug
fixes and find that most of the test cases are small and most
of the bug fixes are local to a small number of lines. These
observations can potentially serve as good heuristics to guide
random program generator to generate test programs, small
in size but effective at detecting new bugs.

11. CONCLUSION
This paper has presented a study of in total 39,890 bugs

and 22,947 bug fixes of GCC, and 12,842 bugs and 8,452 bug
fixes of LLVM, and analyzed the characteristics of compiler
bugs. In particular, we have shown how bugs are distributed
in components and source files (skewness of bugs in a small
number of components and files), how bugs are triggered
and fixed (both bug-triggering test cases and fixes are small
in size), how long bugs live (on average 200 days for GCC
and 111 for clang), and how bugs are prioritized.

We believe that our analysis results and findings pro-
vide insight into understanding compiler bugs and guidance
toward better testing and debugging compilers. All our
data and code are publicly available at http://chengniansun.
bitbucket.org/projects/compiler-bug-study/.

Acknowledgments
We are grateful to the anonymous reviewers for their insight-
ful comments. This research was supported in part by the
United States National Science Foundation (NSF) Grants
1117603, 1319187, 1349528 and 1528133, and a Google Fac-
ulty Research Award. The information presented here does
not necessarily reflect the position or the policy of the Gov-
ernment and no official endorsement should be inferred.

http://chengniansun.bitbucket.org/projects/compiler-bug-study/
http://chengniansun.bitbucket.org/projects/compiler-bug-study/

References
[1] ACE. SuperTest compiler test and validation suite.

http://www.ace.nl/compiler/supertest.html.

[2] A. Balestrat. CCG: A random C code generator. https:
//github.com/Merkil/ccg/.

[3] S. Blazy, Z. Dargaye, and X. Leroy. Formal Verification
of a C Compiler Front-End. In Int. Symp. on Formal
Methods (FM), pages 460–475, 2006.

[4] N. Chen, S. C. H. Hoi, and X. Xiao. Software Process
Evaluation: A Machine Learning Approach. In ASE,
pages 333–342, Washington, DC, USA, 2011.

[5] Y. Chen, A. Groce, C. Zhang, W.-K. Wong, X. Fern,
E. Eide, and J. Regehr. Taming compiler fuzzers. In
Proceedings of the 2013 ACM SIGPLAN Conference
on Programming Language Design and Implementation
(PLDI), pages 197–208, 2013.

[6] R. Chillarege, W.-L. Kao, and R. G. Condit. Defect
Type and Its Impact on the Growth Curve. In Proceed-
ings of the 13th International Conference on Software
Engineering (ICSE), pages 246–255, 1991.

[7] A. Chou, J. Yang, B. Chelf, S. Hallem, and D. Engler.
An Empirical Study of Operating Systems Errors. In
Proceedings of the Eighteenth ACM Symposium on Op-
erating Systems Principles (SOSP), pages 73–88, 2001.

[8] P. Cuoq, B. Monate, A. Pacalet, V. Prevosto, J. Regehr,
B. Yakobowski, and X. Yang. Testing static analyzers
with randomly generated programs. In A. Goodloe and
S. Person, editors, NASA Formal Methods, volume 7226
of Lecture Notes in Computer Science, pages 120–125.
Springer Berlin Heidelberg, 2012.

[9] GCC. GIMPLE – GNU Compiler Collection
(GCC) Internals. https://gcc.gnu.org/onlinedocs/
gccint/GIMPLE.html, accessed: 2014-06-25.

[10] GCC. RTL – GNU Compiler Collection (GCC) Inter-
nals. https://gcc.gnu.org/onlinedocs/gccint/RTL.html,
accessed: 2014-06-25.

[11] V. Le, M. Afshari, and Z. Su. Compiler Validation via
Equivalence Modulo Inputs. In Proceedings of the 2014
ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), 2014.

[12] V. Le, C. Sun, and Z. Su. Finding Deep Compiler Bugs
via Guided Stochastic Program Mutation. In Proceed-
ings of the 2015 ACM SIGPLAN International Confer-
ence on Object-Oriented Programming, Systems, Lan-
guages, and Applications (OOPSLA), pages 386–399.
ACM, 2015.

[13] V. Le, C. Sun, and Z. Su. Randomized Stress-Testing of
Link-Time Optimizers. In Proceedings of the 2015 In-
ternational Symposium on Software Testing and Anal-
ysis (ISSTA), pages 327–337. ACM, 2015.

[14] X. Leroy, A. W. Appel, S. Blazy, and G. Stewart. The
CompCert Memory Model, Version 2. Research report
RR-7987, INRIA, June 2012.

[15] Z. Li, L. Tan, X. Wang, S. Lu, Y. Zhou, and C. Zhai.
Have Things Changed Now?: An Empirical Study of
Bug Characteristics in Modern Open Source Software.
In Proceedings of the 1st Workshop on Architectural and
System Support for Improving Software Dependability
(ASID), pages 25–33, 2006.

[16] N. P. Lopes, D. Menendez, S. Nagarakatte, and
J. Regehr. Provably correct peephole optimizations
with alive. In Proceedings of the 36th ACM SIGPLAN
Conference on Programming Language Design and Im-
plementation (PLDI), pages 22–32, 2015.

[17] S. Lu, S. Park, E. Seo, and Y. Zhou. Learning from Mis-
takes: A Comprehensive Study on Real World Concur-
rency Bug Characteristics. In Proceedings of the 13th
International Conference on Architectural Support for
Programming Languages and Operating Systems (ASP-
LOS), pages 329–339, 2008.

[18] L. Martignoni, R. Paleari, G. Fresi Roglia, and D. Br-
uschi. Testing system virtual machines. In Proceedings
of the 19th International Symposium on Software Test-
ing and Analysis (ISSTA), pages 171–182, 2010.

[19] L. Martignoni, R. Paleari, A. Reina, G. F. Roglia, and
D. Bruschi. A methodology for testing cpu emulators.
ACM Trans. Softw. Eng. Methodol., 22(4):29:1–29:26,
Oct. 2013.

[20] E. Nagai, H. Awazu, N. Ishiura, and N. Takeda. Ran-
dom testing of C compilers targeting arithmetic opti-
mization. In Workshop on Synthesis And System In-
tegration of Mixed Information Technologies (SASIMI
2012), pages 48–53, 2012.

[21] E. Nagai, A. Hashimoto, and N. Ishiura. Scaling up
size and number of expressions in random testing of
arithmetic optimization of C compilers. In Workshop on
Synthesis And System Integration of Mixed Information
Technologies (SASIMI 2013), pages 88–93, 2013.

[22] Plum Hall, Inc. The Plum Hall Validation Suite for C.
http://www.plumhall.com/stec.html.

[23] A. Pnueli, M. Siegel, and E. Singerman. Translation
Validation. In 4th International Conference on Tools
and Algorithms for Construction and Analysis of Sys-
tems (TACAS), pages 151–166, 1998.

[24] J. Regehr, Y. Chen, P. Cuoq, E. Eide, C. Ellison, and
X. Yang. Test-case reduction for C compiler bugs. In
Proceedings of the 2012 ACM SIGPLAN Conference
on Programming Language Design and Implementation
(PLDI), pages 335–346, 2012.

[25] S. K. Sahoo, J. Criswell, and V. Adve. An Empirical
Study of Reported Bugs in Server Software with Impli-
cations for Automated Bug Diagnosis. In Proceedings
of the 32Nd ACM/IEEE International Conference on
Software Engineering (ICSE), pages 485–494, 2010.

[26] L. Song and S. Lu. Statistical Debugging for Real-world
Performance Problems. In Proceedings of the 2014
ACM International Conference on Object Oriented Pro-
gramming Systems Languages and Applications (OOP-
SLA), pages 561–578, 2014.

http://www.ace.nl/compiler/supertest.html
https://github.com/Merkil/ccg/
https://github.com/Merkil/ccg/
https://gcc.gnu.org/onlinedocs/gccint/GIMPLE.html
https://gcc.gnu.org/onlinedocs/gccint/GIMPLE.html
https://gcc.gnu.org/onlinedocs/gccint/RTL.html
http://www.plumhall.com/stec.html

[27] M. Sullivan and R. Chillarege. A Comparison
of Software Defects in Database Management Sys-
tems and Operating Systems. In Twenty-Second In-
ternational Symposium on Fault-Tolerant Computing
(FTCS), pages 475–484, July 1992.

[28] C. Sun, J. Du, N. Chen, S.-C. Khoo, and Y. Yang.
Mining Explicit Rules for Software Process Evaluation.
In ICSSP, pages 118–125, 2013.

[29] C. Sun, V. Le, and Z. Su. Finding and Analyzing Com-
piler Warning Defects. In Proceedings of the 38th Inter-
national Conference on Software Engineering (ICSE).
ACM, 2016.

[30] C. Sun, D. Lo, X. Wang, J. Jiang, and S.-C. Khoo.
A Discriminative Model Approach for Accurate Dupli-
cate Bug Report Retrieval. In Proceedings of the 32Nd
ACM/IEEE International Conference on Software En-
gineering (ICSE), pages 45–54, 2010.

[31] F. Thung, S. Wang, D. Lo, and L. Jiang. An Empirical
Study of Bugs in Machine Learning Systems. In Soft-
ware Reliability Engineering (ISSRE), 2012 IEEE 23rd
International Symposium on, pages 271–280, Nov 2012.

[32] Y. Tian, D. Lo, and C. Sun. DRONE: Predicting Pri-
ority of Reported Bugs by Multi-factor Analysis. In
29th IEEE International Conference on Software Main-
tenance (ICSM), pages 200–209, Sept 2013.

[33] TIOBE. TIOBE Index for May 2016. http://www.
tiobe.com/tiobe index, accessed: 2016-05-15.

[34] J.-B. Tristan and X. Leroy. Formal Verification of
Translation Validators: A Case Study on Instruction
Scheduling Optimizations. In Proceedings of the 35th

ACM Symposium on Principles of Programming Lan-
guages (POPL), pages 17–27, Jan. 2008.

[35] X. Yang, Y. Chen, E. Eide, and J. Regehr. Finding and
Understanding Bugs in C Compilers. In Proceedings of
the 2011 ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), pages
283–294, 2011.

[36] Z. Yin, X. Ma, J. Zheng, Y. Zhou, L. N. Bairavasun-
daram, and S. Pasupathy. An empirical study on config-
uration errors in commercial and open source systems.
In Proceedings of the Twenty-Third ACM Symposium
on Operating Systems Principles (SOSP), pages 159–
172, 2011.

[37] Z. Yin, D. Yuan, Y. Zhou, S. Pasupathy, and
L. Bairavasundaram. How Do Fixes Become Bugs? In
19th ACM SIGSOFT Symposium and the 13th Euro-
pean Conference on Foundations of Software Engineer-
ing (ESEC/FSE), pages 26–36, 2011.

[38] A. Zeller and R. Hildebrandt. Simplifying and Isolat-
ing Failure-Inducing Input. IEEE Trans. Softw. Eng.,
28(2):183–200, Feb. 2002.

[39] C. Zhao, Y. Xue, Q. Tao, L. Guo, and Z. Wang. Au-
tomated test program generation for an industrial op-
timizing compiler. In ICSE Workshop on Automation
of Software Test (AST), pages 36–43, 2009.

[40] T. Zimmermann, N. Nagappan, P. J. Guo, and B. Mur-
phy. Characterizing and Predicting Which Bugs Get
Reopened. In Proceedings of the 34th International
Conference on Software Engineering (ICSE), pages
1074–1083, 2012.

http://www.tiobe.com/tiobe_index
http://www.tiobe.com/tiobe_index

	Introduction
	Methodology
	Source of Bugs
	Threats to Validity

	General Statistics
	Rejected Bug Reports
	Duplicate Bug Reports
	Reopening Bugs

	Location of Bugs
	Distribution of Bugs in Components
	Distribution of Bugs in Files

	Revealing and Fixing Bugs
	Size of Bug-Revealing Test Cases
	Time to Reveal Compiler Regressions
	Size of Bug Fixes
	Lines of Code
	Number of Functions
	Discussion

	Duration of Bugs
	Collecting Duration Data
	Duration Analysis

	Priorities of Bugs
	Priority Distribution
	Priority and Component Correlation
	Priority and Duration Correlation

	A Preliminary Application
	Call for Actions
	Related Work
	Conclusion

