ECS 20: Discrete Mathematics Lecture Notes on the Sieve of Eratosthenes

The Sieve of Eratosthenes is a very ancient algorithm for making a list of the prime numbers less than some integer a. The algorithm starts by creating an array n containing the integers $1 \dots a$, so that n[i] = i. Then it runs the following procedure on the array:

For
$$(i = 2 \text{ to } (a - 1))$$

If $(n[i] \neq \emptyset)$
 $j = 2$
while $(j n[i] < a)$
 $n[j n[i]] = \emptyset$
 $j = j + 1$

Theorem 1 After running the procedure above, the elements of n which are not \emptyset are prime.

Proof: First, we show that no prime number is set to \emptyset . A number k which is set to \emptyset is of the form j n[i], where j, $n[i] \in \mathbb{Z}^+$ (the set of integers greater than zero). So j, n[i] are factors of k, and k is not prime.

We still need to show that every composite number k in the table is set to \emptyset . Since k is composite, it has some prime factor p < k. The integer p is never set to \emptyset , since it is prime, so all multiples of p in the tavle will be set to \emptyset by the procedure. So k will be set to \emptyset .