
1

ECS 162
WEB PROGRAMMING

4/12

Javascript is evolving

¨ Javascript started out in
1995 as a small scripting
language for the
Netscape browser (the
ancestor of Firefox).

¨ It is now the most-used
programming language
in the world. Why?

Javascript is evolving

¨ We are now on ES8, the eighth standardized
version (ECMAScript8).

¨ There was a big step up from ES5 to ES6, so we
casually refer to “modern Javascript” as ES6.

¨ Browser support always lags releases, and there
are slight differences, but we will not worry about
it.

Javascript is evolving

¨ ES6 has a lot of interesting features.
¨ We will concentrate on features we need for

communication over the internet.

¨ Outside of those, in lecture and labs we will stick to
basic features found in almost all languages.

¨ You are welcome to use features outside our subset
in the homework, and discuss them on Piazza!

Everyone has a subset

¨ Javascript gives you a
lot of freedom.

¨ Also it has a huge
collection of legacy
and new features.

¨ This book is a classic
on picking and
choosing Javascript
features.

Strict mode

¨ The original Javascript was intended to be super-
easy to write.

¨ Like the rest of the browser code, the interpreter is
tolerant of mistakes.

¨ Example: semi-colons are required, but your code
runs (often but not always correctly…) without them.

¨ In “strict mode”, some of the things that caused
frequent errors are not allowed (in particular
relaxed rules about variable declarations that led
to accidental global variables).

2

Getting into strict mode

¨ This line is the first thing in your Javascript file:
“strict mode”;

¨ Why isn’t strict mode the default? Why do we have
to request it?

Getting into strict mode

¨ This line is the first thing in your Javascript file:
“strict mode”;

¨ Why isn’t strict mode the default? Why do we have
to request it?

- Because browsers have to run a lot of legacy
code!

Function statement

function f () {
let r = 1;
return r;

}
let a = f();

let b = f;
let c = b();

¨ What is in a? b? c?

Function assignment

let a = f();

let b = f;
let c = b();

• a contains the number
one.

• b contains the function f.

• c contains the number
one.

Function expression

¨ Functions (like everything else) are objects in
Javascript.

¨ So you can put them into variables, pass them as
parameters to other functions, etc.

let a = function f () {
let r = 1;
return r;

}

Function expressions are
an alternative way to
define a function.

Function expression

let a = function () {
let r = 1;
return r;

}

¨ Here “function” is an expression that returns a
function, which gets put into variable a.

¨ On the right-hand side, it does not have a name
yet. It is anonymous.

3

Anonymous functions

let a = function(f) { return f(3); }
a(function (b) {return b+1})

¨ What does this do? And what is going on?

Anonymous functions

let a = function(f) { return f(3); }
a(function (b) {return b+1})

¨ What does this do? And what is going on?

a is a function that takes another function as input.
We call a on an anonymous function, which adds one
to its input.
So the value returned by the second line is 4.

Arrow functions

¨ There is a third function declaration syntax in ES6,
called arrow functions:

let times = (x,y) => { return x * y; }
let square = x => { return x * x; }

¨ parameters => function body block

¨ Shorter than the function keyword
¨ Mostly used as shorthand. I will mostly not use it.
¨ Know it when you see it.

Variables

¨ Three kinds of variable declaration:

let a = 1; // “the usual”

var a = 1; // visible throughout function
const a = 1; // cannot be changed; usual scope

¨ Can also declare without initializing
let a; // a now contains “undefined”

Scope Example

const f = function () {

let id = "Ralph";
if (true) {

let id = "Molly”;
console.log(id);

}

console.log(id);}
f();

¨ Prints “Molly”, then “Ralph”
¨ It would be much better to give these two variables

different names.

Scope Example

const f = function () {

let id = "Ralph";
if (true) {

let id = "Molly”;
console.log(id);

}

console.log(id);}
f();

¨ Two blocks. The scope of a variable is the block
within which it is visible (recognized as declared).

4

Scope Example

const f = function () {

// let id = "Ralph";
if (true) {

var id = "Molly”;
console.log(id);

}

console.log(id);}
f();

¨ Prints “Molly”, then “Molly”.

Scope Example

const f = function () {

let id;
if (true) {

id = "Molly"
console.log(id);

}

console.log(id);}
f();

¨ Exactly the same behavior as previous slide.

When to use var?

¨ Almost never.
¨ It used to be the only choice. It was for the

convenience of the interpreter, not the programmer.
Good riddance!

¨ Much of the code you see on Stack Exchange, etc,
uses “var”. Not changing it to “let” is a good
indication that you are plagiarizing instead of
learning.

Function hoisting

¨ Function variables declared using the function
expression:

let f = function () {}

have the usual scope rules.
¨ Function variables declared using the function

statement:
function f () {}

Are silently “hoisted” to the top of the scope they
are in.

Example

f();
function f () {

let id = "Ralph";

console.log(id);
}

¨ Works fine.
¨ Changing the function declaration to a function

expression causes an error.
¨ Should you use this function statements?

Pros and Cons

¨ Should you use function statements?

¨ Pro:

Lets your code flow more nicely. Eg. “main” can
go at the top and serve as an outline.

¨ Con:
Similar to var, allowing things to be used before

they are defined might lead to bugs. Also, function
expressions look ugly.

