
1

ECS 162
WEB PROGRAMMING

4/22

Scalar Objects

¨ String, Number, Boolean, undefined, null
¤Assigned by value

let a = 2;

let b = a;
let c = 2;

¨ Three variables, each containing 2
a === c // true

a b
2 2

c
2

Compound Objects

¨ Array, Object
¤Assigned by reference

let a = {“val”: 2};

let b = a;
let c = {“val”: 2};

¨ There are two references (a and b) to one object
a === b // true
a === c // false

{val: 2}
a, b c

{val: 2}

We’ve been using this

let temp = document.getElementById(“tempPgh”);

temp.textContent = “72\u00b0”;

¨ Here temp is a new reference to an existing object
(part of the DOM). Changing its textContent
property changes the DOM.

// does not change the DOM
let temp = document.getElementById(“tempPgh”);

let tStr = temp.textContent; // a whole new string

tStr = “72\u00b0”;

Functions

¨ Since functions are objects, they have properties.
let f = function () {

console.log(f.animal);

}

f.animal = "cow";

¨ Functions are also assigned by reference
let g = f;

g.animal = "sheep";

¨ There is one function, and it prints “sheep”
¨ f and g are both references to the function

Garbage Collection

¨ Javascript has garbage collection, unlike C, C++ or
Java.

¨ Notice we never allocate space for objects, and we
don’t have to free them.

¨ What is garbage collection?

2

Garbage Collection

¨ Javascript has garbage collection, unlike C, C++ or
Java.

¨ Notice we never allocate space for objects, and we
don’t have to free them.

¨ What is garbage collection?
¨ The interpreter keeps track of the number of

references to each variable. If the number of
references goes down to zero, it reclaims the
memory, and the variable is gone.

¨ How do references to a variable disappear?

Variable destruction

¨ How do references to a variable disappear?
¨ The reference to a variable is removed when the

block it belongs to exits.
function changeTemp() {

let t = document.getElementById(“temp”);

t.textContent = “72\u00b0”;

}

¨ During the function, the object with id “temp” had two
references.

¨ After the function exits, it has one.

Listener for image download

¨ In collectPastDoppler, we set a listener for when an
image has finished downloading.

¨ This is the fourth listener we’ve seen (onclick, onload
for JSON, setInterval in animation, onload for
image)

Callback functions

¨ The functions called by the listeners – onclick,
onload, setInterval – are called callback functions.

¨ This pattern – set up a listener with a callback
function – occurs all over Web code.

¨ Javascript is designed to handle it gracefully.
¨ Particular interesting, useful language feature:

closure.

Closure

function tryToGetImage(dateObj) {

…

let newImage = new Image();

newImage.onload = function () {
addToArray(newImage);

}

¨ The variable newImage belongs to tryToGetImage().
¨ newImage should disappear when tryToGetImage

exits.
¨ But it is still there when the anonymous callback

function runs, much later!

Closure

function tryToGetImage(dateObj) {

…

let newImage = new Image();

newImage.onload = function () {
addToArray(newImage);

}

¨ Any function created inside a block creates new
references to all the variables from that block.

¨ This is called a closure.
¨ We say that newImage is in the closure of the

anonymous function.

3

Closure

¨ Lets look at a simpler example (from Elequent
Javascript):

function wrapValue(n) {

let local = n;

return () => local;

}

let wrap1 = wrapValue(1);

let wrap2 = wrapValue(2);

Closure

¨ Lets look at a simpler example (from Elequent
Javascript):

function wrapValue(n) {

let local = n;

return function () = { return local; };

}

let wrap1 = wrapValue(1);

let wrap2 = wrapValue(2);

¨ Type of wrap1 and wrap2?

Closure

function wrapValue(n) {

let local = n;

return function () = { return local; };

}

let wrap1 = wrapValue(1);
let wrap2 = wrapValue(2);

console.log(wrap1(), wrap2()) ;

¨ What does it print?

Closure

function wrapValue(n) {

let local = n;

return function () = { return local; };

}

let wrap1 = wrapValue(1);
let wrap2 = wrapValue(2);

console.log(wrap1(), wrap2()) ;

¨ What does it type?
1 2 – there are two separate functions, each

referring to a different local variable “local”

Adding onclick…using Javascript

<div class="bird" id="peacock"
onclick="disappear('peacock')" >

¨ Consider building the corresponding DOM node in
Javascript

birdDiv = document.createElement("div");
birdDiv.className = "bird";
birdDiv.id = "peacock";
birdDiv.onclick = "disappear('peacock')";
¨ What is the type of birdDiv.onclick?

Adding an onclick value

<div class="bird" id="peacock"
onclick="disappear('peacock')" >

¨ Consider building the corresponding DOM node in
Javascript

birdDiv = document.createElement("div");
birdDiv.className = "bird";
birdDiv.id = "peacock";
birdDiv.onclick = "disappear('peacock')";
¨ What is the type of birdDiv.onclick? STRING, sadly.

4

How about this?

birdDiv.onclick = disappear('peacock');

¨ What is the type of birdDiv.onclick?

How about this?

birdDiv.onclick = disappear('peacock');

¨ What is the type of birdDiv.onclick?
undefined, since disappear is executed on the right-
hand side, and it does not have a return value.

Third try

birdDiv.onclick = disappear;

¨ What is the type of birdDiv.onclick?

Third try

birdDiv.onclick = disappear;

¨ What is the type of birdDiv.onclick?
It’s a function, but it's not going to work without it's
parameter! It has to know which one to delete!

Three trys, all wrong…

birdDiv.onclick = "disappear('peacock')";
birdDiv.onclick = disappear('peacock');
birdDiv.onclick = disappear;

Do it using a closure

function addOnclick(element, func, param) {
function noarg() {

func(param);
}

element.onclick = noarg;
}

addOnclick(birdDiv, disappear, "peacock");
¨ Notice we define a function inside another function.
¨ What is the type of birdDiv.onclick?

5

Do it using a closure

function addOnclick(element, func, param) {
function noarg() {

func(param);
}

element.onclick = noarg;
}

¨ When does "noarg" get called?

Do it using a closure

function addOnclick(element, func, param) {
function noarg() {

func(param);
}

element.onclick = noarg;
}

¨ When does "noarg" get called? When the button is
pushed, long after "addOnclick" has exited.

¨ But its closure still contains the references to “param"
and "func”.

Closure

¨ The closure of a Javascript function contains all the
variables in the scope within which the function was
defined.

¨ The closure is part of the function object.
¨ The closure of "noarg" is "addOnclick"
¨ The local variables declared in "addOnclick” are

available to "noarg", forever.
¨ If we call "addOnclick" multiple times, we can

declare different instances of the local variables,
and versions of "noarg" with different closures.

See example in poultry3.js

¨ Additional things to notice…

¤Uses DOM methods querySelector() and
querySelectorAll(), more general variants of
getElementById

¤Function can be called before it is defined, thanks
to function hoisting.

Anonymous closure

¨ Closure and anonymous functions are often combined
in a powerful but (initially…) mysterious pattern.

function addOnclick(element, func, param) {
element.onclick = function () {

func(param);
}

}
¨ Do we prefer the anonymous version?

