ECS 162
WEB PROGRAMMING

Green dot under Fairfield

[—

o Whatis going on?

o Whatis doppler radar)
anyway? N \

o It returns signal when the
radar — a bit above
ground level —
encounters moving
objedts.

o Usually this is rain, snow,
hail, might be bugs or
birds.

Rio Vista wind farm

What could go wrong?
[

LTS

let weather = {“desc” : “sunny” }
function check(w) {
if (w.desc= “raining”)
{ console.log(“umbrellal”); }
}
check(weather);
console.log(weather.desc);
o Trick question — what does this print?

umbrella! and then raining. Used =, not ==

Green dot under Fairfield

[—

o Whatis going on?

0 Whatis doppler radar
anyway?

o It returns signal when the
radar — a bit above

ground level —
encounters moving

obijects.

o Usually this is rain, snow,
hail, might be bugs or
birds.

What could go wrong?
[

let weather = {“desc” : “sunny” }
function check(w) {
if (w.desc= “raining”)
{ console.log(“umbrella!”); }
}
check(weather);
console.log(weather.desc);

o Trick question — what does this printe

Side effect of bug in function...
R

o Could we prevent errors by declaring the object
with const, rather than let2

o Sadly no! Const prevents the reference weather
from being re-used for some other object. Butthe
objectitself is still mutable.

o0 So const is mostly useful for primitive scalar data
types.

Today
[—
O More closure examples

o Closures are what people from industry ask about
when they want to know if we are running a serious
Web programming course

o In Javascript, closures are the answer to life, the
universe and everything...

Closure quiz
[

let x = "outer";

function f() {

let x = "tnner"s T
et x = "inner"; (What does it print?
let a = function () N

"inner”, then “outer”.
console.log(x);

.}-efum a; The closure of a() contains all the
} local variables of f(). The local
variable x inside of the function

hides the global variable.

let a = f(); a(); console.log(x);

Global variables
[

o A variable declared outside of any function is global
o In strict mode:

fanction accidentallyGlotall)
accident = 2; 0

}

accidentallyGloballl;

console, logl*accident1®, accident)}

o Runs fine in “sloppy mode”, creates a global variable
accident.

o How do you make yow programsstrict mode?

First line of .js file should be “use strict”

Closure quiz
R

let x = "outer";

function f() {

let x = "inner’; o
etx = fmer What does it print2
let a = function () {

console.log(x);

}

retum a;

let a = f(); a(); console.log(x);

Global variables
[s

o A variable declared outside of any function is global

o In strict mode:

fanction accidentallyGlotall)
dccident = 2; 0

}

accidentallyGloballl);

cansole, logl*accident1®, accident)}

o Runs fine in “sloppy mode”, accidentally creates a
global variable accident.

o How do you make you programsstrict mode?

Using a global variable
[

el bvagnieviey = || () giobe vatude Lo Nodd Siach of Irapes for an sl on
el ot = Oy 21 ol war

funcnian sddTanvap rewmage| |
I (oore < 10y |
rewmage. d « ‘dpgier<aer
rewrage. myle Aplay « o’
ITageATEy Pt ewirage|;
CONt * coemtsl;
H (oourt »= ¥ {
comole log Tot 18 saopier drager):
)

o Count is global so that it persists between calls to
addToArray().

Static variables
|

o Static variables are local, but persist through
multiple calls to the function.

o Javascript does nothave them!
o Butit is so uncool to use globals instead.
o Why?

Function property as static variable
s

function persist() {
if (persist.x == undefined) {
persist.x = 0;
}
persist.x++;

console.log(persist.x);

}

O People seem to think this is better, but it isn’t

Solution using a closure

—

function makeFunctionWithStatic() {
let count = 0;

let newFun = function () {

count = count+1; Function that

if (count >= 5) returns a function
{count = 0;} that has a static

console.log(count); variable.

}

return newFun;

}

Static variables
|

o Static variables are local, but persist through
multiple calls to the function.
o Javascript does nothave them!
o Butit is so uncool to use globals instead.
o Why?
Because it often introduces bugs. Itis easy to

accidentally change a global variable, since it
can be changed anywhere in the file.

It’s still globall
s

function persist() {
if (persist.x == undefined) {
persist.x = 0;
}
persist.x++;

console.log(persist.x);

}

console.log(persist.x); // Works! Bad! Plus, ugly...

Solution using closure
e

let counter = makeFunctionWithStatic();
for (i=0; i<10;i++)

{counter();}

o Now count is static - it persists between calls to
counter() — and also local fo counter().

Obijects

——

o A Javascript objectis, atheart, a data structure
mapping keys to values (map/dictionary /hash
table /associative array).

o While this is super-simple and useful, it does not
cover some important things:
oPrivate data and methods
Olnheritance
Olnstantiation

O These are also available in Javascript via
classes

Class

—
class Weather {

constructor (desc) {

this.desc = desc;

}
}

let DavisWeather = new Weather("sunny");
o Defines a dass of objects.

O An instance of a Weather object is created using the
new keyword.

o The constructor function might take arguments.

Class
|

class Weather {
constructor (desc) {
this.desc = desc;
}
}

let DavisWeather = new Weather("sunny");

o So far, the resulting object (DavisWeather) is the
same as the version declared with an object literadl.

Public vs private data

——
let DavisWeather = {"desc": "sunny"};

o0 Any code with access to weather also sees
weather.desc and weathertemp — that is, these
properties of the object are public.

o Javascript does not really have private data
associated with objects, but we fake it with function
scoping.

o In ES6 (the most recent version of Javascript), we do

this by dedaring a dass, which gives us a
constructor method.

Constructor functions

——
o By convention, the name of a dlass begins with a
capitol letter
o Constructor function parameters control the initial
seftings of properties
o "this" in the constructor function contains the object

being created. As opposed to, say, the class or the
constructor function, which are also objeds...

Local variables in constructor
|

class Weather {
constructor (desc, day) {
this.desc = desc;
let _day = day; // alocalvariable in a function
this.report = function () {
console.log("On ", _day, "the weatheris ",desc);

1}

o The variable _day isincluded in the closure of the report
method.

o Local variables in the closure of a method defined in the
constructor are not visible outside the constructor or method.

Constructor with multiple methods

e
o Add a method:

this.changeDay = function () { The two functions

_w " share the same

_day = "Tuesday’;

closure — the local
} variables of the

o We see that it changed: constructor function.

DavisWeather.changeDay ()

DavisWeather.report()

> On Tuesday the weather is sunny

Private data

[e —

o This is not exactly like private data in a C++ or
Java dass

o Butit servers the same purpose, more or less.

o The local variables of the constructor in the closure
are private to the dass, but persist throughout the
lifetime of the object.

The closure is shared

- “

DavisWeather

