
1

ECS 162
WEB PROGRAMMING

4/24

Green dot under Fairfield

¨ What is going on?
¨ What is doppler radar

anyway?
¨ It returns signal when the

radar – a bit above
ground level –
encounters moving
objects.

¨ Usually this is rain, snow,
hail, might be bugs or
birds.

Green dot under Fairfield

¨ What is going on?
¨ What is doppler radar

anyway?
¨ It returns signal when the

radar – a bit above
ground level –
encounters moving
objects.

¨ Usually this is rain, snow,
hail, might be bugs or
birds.

Rio Vista wind farm

What could go wrong?

let weather = {“desc” : “sunny” }
function check(w) {

if (w.desc = “raining”)
{ console.log(“umbrella!”); }

}
check(weather);
console.log(weather.desc);

¨ Trick question – what does this print?

What could go wrong?

let weather = {“desc” : “sunny” }
function check(w) {

if (w.desc = “raining”)
{ console.log(“umbrella!”); }

}
check(weather);
console.log(weather.desc);

¨ Trick question – what does this print?
umbrella! and then raining. Used =, not ==

Side effect of bug in function…

¨ Could we prevent errors by declaring the object
with const, rather than let?

¨ Sadly no! Const prevents the reference weather
from being re-used for some other object. But the
object itself is still mutable.

¨ So const is mostly useful for primitive scalar data
types.

2

Today

¨ More closure examples
¨ Closures are what people from industry ask about

when they want to know if we are running a serious
Web programming course

¨ In Javascript, closures are the answer to life, the
universe and everything…

Closure quiz

let x = "outer";

function f() {

let x = "inner";

let a = function () {

console.log(x);

}
return a;

}

let a = f(); a(); console.log(x);

What does it print?

Closure quiz

let x = "outer";

function f() {

let x = "inner";

let a = function () {

console.log(x);

}
return a;

}

let a = f(); a(); console.log(x);

What does it print?
"inner”, then “outer”.

The closure of a() contains all the
local variables of f(). The local
variable x inside of the function
hides the global variable.

Global variables

¨ A variable declared outside of any function is global
¨ In strict mode:

¨ Runs fine in “sloppy mode”, accidentally creates a
global variable accident.

¨ How do you make your programs strict mode?

Global variables

¨ A variable declared outside of any function is global
¨ In strict mode:

¨ Runs fine in “sloppy mode”, creates a global variable
accident.

¨ How do you make your programs strict mode?
First line of .js file should be “use strict”

Using a global variable

¨ Count is global so that it persists between calls to
addToArray().

3

Static variables

¨ Static variables are local, but persist through
multiple calls to the function.

¨ Javascript does not have them!
¨ But it is so uncool to use globals instead.
¨ Why?

Static variables

¨ Static variables are local, but persist through
multiple calls to the function.

¨ Javascript does not have them!
¨ But it is so uncool to use globals instead.
¨ Why?

Because it often introduces bugs. It is easy to
accidentally change a global variable, since it
can be changed anywhere in the file.

Function property as static variable

function persist() {
if (persist.x == undefined) {

persist.x = 0;
}

persist.x++;

console.log(persist.x);
}

¨ People seem to think this is better, but it isn’t

It’s still global!

function persist() {
if (persist.x == undefined) {

persist.x = 0;
}

persist.x++;

console.log(persist.x);
}

console.log(persist.x); // Works! Bad! Plus, ugly…

Solution using a closure

function makeFunctionWithStatic() {

let count = 0;

let newFun = function () {

count = count+1;

if (count >= 5)

{count = 0;}

console.log(count);
}

return newFun;

}

Function that
returns a function
that has a static
variable.

Solution using closure

let counter = makeFunctionWithStatic();
for (i=0; i<10; i++)

{counter();}

¨ Now count is static - it persists between calls to
counter() – and also local to counter().

4

Objects

¨ A Javascript object is, at heart, a data structure
mapping keys to values (map/dictionary/hash
table/associative array).

¨ While this is super-simple and useful, it does not
cover some important things:
¤Private data and methods
¤ Inheritance
¤ Instantiation

¨ These are also available in Javascript via
classes

Public vs private data

let DavisWeather = {"desc": "sunny"};
¨ Any code with access to weather also sees

weather.desc and weather.temp – that is, these
properties of the object are public.

¨ Javascript does not really have private data
associated with objects, but we fake it with function
scoping.

¨ In ES6 (the most recent version of Javascript), we do
this by declaring a class, which gives us a
constructor method.

Class

class Weather {

constructor (desc) {

this.desc = desc;

}

}

let DavisWeather = new Weather("sunny");

¨ Defines a class of objects.
¨ An instance of a Weather object is created using the

new keyword.
¨ The constructor function might take arguments.

Constructor functions

¨ By convention, the name of a class begins with a
capitol letter

¨ Constructor function parameters control the initial
settings of properties

¨ "this" in the constructor function contains the object
being created. As opposed to, say, the class or the
constructor function, which are also objects…

Class

class Weather {

constructor (desc) {

this.desc = desc;

}

}

let DavisWeather = new Weather("sunny");

¨ So far, the resulting object (DavisWeather) is the
same as the version declared with an object literal.

Local variables in constructor

class Weather {

constructor (desc, day) {

this.desc = desc;

let _day = day; // a local variable in a function

this.report = function () {

console.log("On ", _day, " the weather is ",desc);

} } }
¨ The variable _day is included in the closure of the report

method.

¨ Local variables in the closure of a method defined in the
constructor are not visible outside the constructor or method.

5

Constructor with multiple methods

¨ Add a method:
this.changeDay = function () {

_day = "Tuesday";
}

¨ We see that it changed:
DavisWeather.changeDay()
DavisWeather.report()
> On Tuesday the weather is sunny

The two functions
share the same
closure – the local
variables of the
constructor function.

The closure is shared

_day

chagneDay report

DavisWeather

Private data

¨ This is not exactly like private data in a C++ or
Java class

¨ But it servers the same purpose, more or less.
¨ The local variables of the constructor in the closure

are private to the class, but persist throughout the
lifetime of the object.

