
1

ECS 162
WEB PROGRAMMING

4/26

Server-side programming

¨ aka "back end"
¨ Remainder of class organized around one large

project, in three steps.

¨ This week, we’ll do a sort of “hello world”
¨ After midterm, we’ll get started in earnest.

¨ MIDTERM: Monday May 6, in class
¨ Uzair put sent out last year’s midterm, also on

“Labs” page

Flash cards

¨ Make cards
¤ Use Google Translate API to translate from English to

another language. Store flash card in database if
user approves.

¨ Use cards
¤ User sees other language text, tries to produce English.

¤ System keeps track of how user did

¨ Pick some language with which you are at least a
little familiar

¨ Can we use some transliteration input for non-
Roman alphabet languages?

System design

¨ Now we write both server and browser code
¨ Database can be running on same machine as

server, but behaves like it is on another machine.

Server

Broswer

Database Cloud Translate API

This week

¨ Backend setup
¤ Set up server

¤ Serve static files (html, css, javascript, images…)

¤ Due Thurs May 2

¤ Not difficult; we will also be preparing for the midterm.

Design option

¨ If you want to do your own design for this project:
¤ Jamie will give us some wireframes this week

¤ You can produce design documents similar in quality
and presentation to what we've seen from Jamie (fonts,
colors, icons…)

¤ Include about half a page of text on your design
decisions

¤ We will reject designs that show an insufficient level of
professionalism

2

What is a server?

¨ Any computer on the internet running server
software can be a Web server.

¨ A server recieves HTTP requests and produces HTTP
responses.

¨ Example: OpenWeatherMap

Server

¨ A server handles static and dynamic requests.
¨ Static requests download a file, eg. HTML, CSS,

Javascript, an image...this is called "serving pages"

¨ Dynamic requests answer queries, often in JSON;
similar to what the OpenWeatherMap API server
was doing for us.

¨ When a Web page sends queries to the server
from which it was downloaded, these are AJAX
queries (Asynchronous JavaScript and XML, even
though often not in XML).

Our server

¨ We’re using a cloud server from a company called
Digital Ocean

¨ Our server has the elegant name:
server162.site

¨ Our server is a Unix machine, like most (but
not all) servers

Node.js

¨ Our server code will be written using node.js.
¨ Node.js is a way to run Javascript programs from

the Unix command line, for example:

node serverOne.js

…runs the Javascript program in the file serverOne.js.

Alternative to Node.js

¨ The classic Web browser runs on the LAMP stack:
Linux, Apache (Web server), MongoDB (database),
PHP (scripting language).

¨ Node.js and our Javascript code replaces Apache
and PHP. A server still needs an OS and, usually, a
database.

Server modules in node.js

¨ Node.js also includes a set of Javascript modules
that help us deal with problems like:

¤ serving Web pages,

¤ responding to AJAX queries,

¤ querying specific APIs

¤ and interacting with a database.

¨ Express is a node module with many server
functions and an elegant interface

¨ We’ll use express and several other modules.

3

Modules

¨ Modules are something like C or C++ libraries.
¨ A module is a file containing Javascript code.
¨ Objects, data and functions that programs that we

want other files to see are labeled external.
¨ Modules provide another level of encapsulation and

data hiding (in addition to functions and objects).
¨ Most modern browsers support them if served using

CORS.

¨ Node.js is built around modules

Ports

¨ Each of us will be running our own server on the
same machine at Digital Ocean.

¨ To direct incoming traffic to the right server, each of
us will get a unique port number

¨ At the operating system level, a message comes in
off the internet, and the system uses the port
number to create an interrupt to send to the
appropriate Web server

Server code at a lower level

¨ Mostly hidden by node.js
¨ We know Web server gets http requests and

produces http responses.

¨ Server code is organized around producing http
responses.

¨ Node.js servers are organized around a central
object, usually named "response".

Accessing the server

ssh server162.site

¨ You should be able to login using your Kerberos
account credentials

¨ Your port number will be in the file

myPortNumber

Simple Web server

const express = require('express')

¨ Brings in the express module.

¨ Must be installed before using

npm install express
¨ On the command line
¨ NPM is the node package manager

Handler function

function handler (req, res) {…

¨ All node.js servers use a handler function, which is
called when a new request arrives at the server. Its
job is to put together a response to the request.

¨ The request object (here req) contains information
about the http request.

¨ We (the handler) use the response object (here res) to
build up our response.

4

Typical handler structure

let url = req.url;

¨ Get whatever data we need out of request object

¨ Here url is the url that we received.

Sending the response

res.send('You requested '+url);

¨ Calling res.send() tells express that we have finished
filling in the response object, and it is OK to send
the response back to the browser.

¨ Once you call res.send(), the HTTP message is sent
and you can't change the response object any more.

¨ The input to res.send is what to send back to the
browser.

Asking express for a server

const app = express()
app.get('/*', handler)
¨ Calling express() creates a new application object

¨ It is traditionally called app
¨ We want it to handle HTTP GET requests

¨ We tell it to call the handler function whenever a
GET request arrives, with any url (/ followed by
anything)

¨ The handler function is kind of like a callback

listen

app.listen(port, function (){console.log('Listening...');})

¨ This starts the server and tells node.js, Unix and TCP
that requests that are labeled with your port should
go to your server

¨ The server hangs, waiting to get a request

¨ I cannot emphasize too much that your server should
listen to YOUR PORT NUMBER, not mine

Running and using the server

¨ On the server (Digital Ocean), run the simple server
program:

node miniServer2.js

¨ It should hang, waiting for input from the operating
system

¨ From any browser, anywhere, request the URL
http://server162.site:[your Port

number]/anyPageNameYouLike

¨ Should get response:
Hello! You asked for anyPageNameYouLike

Summary

¨ Typical overall node server structure
1. Make a handler function

a) In it, get data out of request object
b) Then construct response
c) Call app.send() when response is completed

2. Create a server object specifying your handler
3. Start it listening to YOUR PORT
4. Web pages are now visible on the internet!

