
1

ECS 162
WEB PROGRAMMING

4/29

Assignment 4

¨ Set up and test out server.
¨ Server has to:

¤Serve static files (http, css, js)
¤Respond to AJAX queries, providing JSON

¨ Today, we make a server that does all these things
¨ By Thursday, you will try it out, give it some files to

serve, and make it answer a specific query.

miniServer2.js from last time

const express = require('express');

const port = // put your port number here

function handler(req, res) {

let url = req.url;

res.send('You requested '+url);

}

const app = express();
app.get('/*', handler);

app.listen(port, function () {console.log('Listening...');});

Request and response objects

¨ Like the Netflix envelopes
we used to get in the mail

¨ The request object is the
DVD; it has the data in it

¨ The response object is the
envelope itself; you put
what you’re sending back
into it

¨ res.send() “drops it in the
mailbox”

¨ What is the actual internet
traffic that this metaphor
corresponds to?

HTTP request

Head

Body

(body often empty)

(em

HTTP response

(empty)

Head

Body

2

Static URLs

¨ Include just a pathname, eg: on the UCD CS server:

www.cs.ucdavis.edu/~amenta/s19/ecs162.html

¨ There is an actual file on the server (here
ecs162.html), which gets sent in the body of the
HTTP response (server code “puts it into the
envelope”).

Dynamic URLS

¨ The URL we used with the OpenWeatherMap API
requested the server to get something out of a
database, format it, and make JSON; this is
dynamic

http://api.openweathermap.org/data/2.5/forecast/
hourly?q=Davis,US&units=imperial&APPID=xxx

¨ In this case, server162.site handles both static and
dynamic HTTP requests.

Handling different urls

¨ The idea of sending different urls to different sub-
handlers is called routing.

¨ Exactly one of the rectangular boxes returns the
response.

server162.site:#####

valid
query ?

YES

Not found

Static Server

Dynamic Server
NONot Found

Message

Static server

¨ Since we are using express, we will use its static
server module.

¨ We get node modules through npm, the Node
Package Manager (despite joke name upper left)

NPM

¨ Repository for many, many node modules
¨ Varying quality, probably many viruses, etc. Look

for well-known, open source modules
¨ The require statement that "includes" a module

gives an error message until we install the module
¨ Do this on the Unix command line, eg:

npm install node-static
¨ Creates files in subdir node_modules

The server

¨ Main function is just these five lines of express.
¨ Top line makes object; last hangs waiting for HTTP

requests.

const app = express();
app.use(express.static('public'));
app.get('/query', queryHandler);
app.use(fileNotFound);
app.listen(port, function (){console.log('Listening...');});

3

Middleware

¨ Server control flow is a pipeline of “middleware
functions”

¨ Ours will be pretty simple

¨ A middleware function either calls res.send() or it
calls a special function called “next”, which moves
on to the next pipeline stage.

Static server Query server URL not found

Routing defines a virtual directory structure

Handler as middleware

function queryHandler(req, res, next) {
… }
¨ Takes request object, response object, and next

function as input.
¨ Trys to figure out response to request. If it can, fills in

the response object and calls res.send(). The end.
¨ If it can’t, calls next.
¨ HAS TO HAVE this structure, otherwise messes up

pipeline.

Building the pipeline

¨ We build an express pipeline by adding
middleware functions using pipeline constructor
methods such as:

app.use(), app.all(), app.get(), app.post()
¨ Each of these takes an optional path as its first

argument, which controls which HTTP requests the
middleware gets applied to.

¨ The second (and maybe more) arguments are
middleware functions, which go into the pipeline in
order.

The pipeline

¨ Order of functions in pipeline is order in which they
were inserted.

Constructor functions

¨ app.get(), app.post() - The middleware it adds
only gets applied to HTTP GET or POST requests,
respectively. The url is required and has to exactly
match (but regular expressions allows * (all) or ?
(either), etc).

¨ app.all() – any kind of HTTP request, but url rules as
above.

¨ app.use() - applies it to anything beginning with the
path, and to everything if the path is not specified.
Usually at least the “not found” handler applies to
everything.

4

Confusing

¨ app has two “get” methods,
one for getting its properties
and the other for adding
middleware that only
applies to get requests.

Queries

¨ The ? in a query signals the end of the path and the
beginning of the query

¨ Queries are key-value pairs, separated by &
q=Davis,US&units=imperial&APPID=xxx
animal=bear
word=malapropism

¨ rec.query contains the query as an object.

Returning JSON

¨ Most of our queries will return JSON.
¨ The response object has a method that takes an

object, stringifies it, puts it in the body of the HTTP
response, and then sends the response:

res.json({"beast" : qObj.animal});

¨ You don’t need res.send() when you call res.json().

Homework

¨ Change the query so that it takes a word as input
and returns the palindrome.
¤ Input: word=malapropism in query string

¤ Output: ‘{ “palindrome” : “malapropismmsiporpalam” }’

¨ Then make a little app that exercises this AJAX request-
response. I gave you the html (you can make it better,
and add css, if you want). You need to add the
Javascript.

¨ Javascript should include an onclick function that sends
the HTTP request, and the callback function that gets
run when the response gets back.

HTTP request from Assn 3 (CORS)

let url = "http://api.openweathermap.org/data…"
let xhr = new XMLHttpRequest();
xhr.open(method, url, true);
xhr.onload = function() {…};
xhr.onerror = function() {…};
xhr.send();

HTTP request for Assn 4 (AJAX)

let url = “query?animal=bat"
let xhr = new XMLHttpRequest();
xhr.open(method, url, true);
xhr.onload = function() {…};
xhr.onerror = function() {…};
xhr.send();

¨ URL does not contain name of server (domain name
and port). By default, it goes back to the server
the Web page came from.

