ECS 162
WEB PROGRAMMING

miniSer ver2.js from last time
[

const express = require('express);
const port = // put your port number here
function handler(req, res) {
let url = req.url;
res.send("You requested "+url);
}
const app = express();
app.get('/*, handler);

app.listen(port, function () {console.log('Listening...);});

HTTP request

AT St AN RCHLAT, VI ML, S
ROMTI WOB SR ACRIVIL, B0u
Head pemartioe: boep-olive
.-

AL S R R
Lase Gachod Oheomer¥, 03004 W0 Sateriss

L L

Body

Assignment 4
[—
o Setup and test outserver.
o Server has to:
OServe static files (http, css, js)
ORespond to AJAX queries, providing JSON
o Today, we make a server that does all these things
o By Thursday, you will try it out, give it some files to
serve, and make it answer a specific query.

Request and response objects
[e —
O Like the Netflix envelopes

we used to get in the mail

O The request object is the
DVD; it has the data in it

O The response object is the
envelope itself; you put
what you're sending back

into it
O What is the actual internet

O res.send() “drops it in the
traffic that this metaphor

mailbox”
corresponds to?

HTTP response
[

TLL N X

Batec Fri, 3 Apr 200 i dL:4T GaT
SO ARME ALY TBeia) Opeeialst 0. ar
Head LAST-MIrind Fri, B8 Agr 2008 92i4N/51 AT

DTy " 20 2000 e Mis] e iy
Moegt ey bty

ComprAlive: Timmim i, saestd
Comrertion: Koep 4l ine
Comtem-Tppa: teet/res

Body 4 <
Tt Progremeing - B Mevise/TITUEs

PR NI D B o

VT RN Tyt TN e oy I e

Static URLs
|

o Include just a pathname, eg: on the UCD CS server:
www.cs.ucdavis.edu/~amenta/s19/ecs162.himl

o There is an actual file on the server (here
ecs162.himl), which gefts sentin the body of the
HTTP response (server code “puts it into the
envelope”).

Handling different urls

o The idea of sending different urls to different sub-
handlers is called routing.

Not found ‘
Not Found
Message

NO
o Exactly one of the recfangular boxes returns the

Dynamic Server

N

response.

NPM
e

o Repository for many, many node modules

o Varying quality, probably many viruses, etc. Look
for well-known, opensource modues

o The require statement that "includes" a module
gives an error message until we install the module

o Do this on the Unix command line, eg:
npm install node-static
o Creates files in subdir node_modules

Dynamic URLS

—
o The URL we used with the OpenWeatherMap API|
requested the server to get something out of a
database, format it, and make JSON,; this is

dynamic

http:/ / api.openweathermap.org/data /2.5 /forecast/
hourly 2g=Davis,US &units=imperial &AP PID=x x x

o In this case, server162.site handles both static and
dynamic HTTP requests.

Static server
|

o Since we are using express, we will use ifs static
server module.

o We getnode modules through npm, the Node
Package Manager (despite joke name upper left)

~een

The server
A —
O Main function is just these five lines of express.

o Top line makes object; last hangs waiting for HTTP
requests.

const app = express();

app.use (e xpress.static(' public'));

app.gef('/query', queryHandler);

app.use(fileNotFound);

app.listen(port, function ({console.log('Listening...");});

Middleware

o Server control flow is a pipeline of “middleware
functions”

o Ours will be pretty simple

» Query server » URL not found

o A middleware function either calls res.send() or it
calls a special function called “next”, which moves
on fo the next pipeline stage.

Handler as middleware

——
function queryHandler(req, res, next) {
o Takes request objedt, response object, and next
function as input.
o Trys to figure out response to request. If it can, fills in
the response object and calls res.send(). The end.
o If it can’t, calls next.

o HAS TO HAVE this structure, otherwise messes up
pipeline.

The pipeline
s

o Order of functions in pipeline is order in which they
were inserted.

Routing defines a virtual directory structure

Building the pipeline
——
o We build an express pipeline by adding

middleware functions using pipeline constructor
methods such as:
app.use(), app.all(), app.get(), app.post()

o Each of these takes an optional path as its first
argument, which controls which HTTP re quests the
middleware gets applied to.

o The second (and maybe more) arguments are

middle ware functions, which go into the pipeline in
order.

Constructor functions

——

o app.get(), app.post() - The middleware it adds
only gets applied to HTTP GET or POST re quests,
respectively. The url is required and has to exacily
match (but regular expressions allows * (all) or 2
(either), etc).

o app.all()— any kind of HTTP request, but url rules as
above.

o app.use() - applies it to anything beginning with the
path, and to everything if the path is not specified.
Usually at least the “not found” handler applies to
everything.

Confusing
s

Wp enabled)

o app has two “get” methods,

Ppengne)

o ,..‘,¢ one for getting its properties
wpp.getl) and the other for adding

aep bwtend) middleware that only

P :‘: THOO applies fo get requests.

00 PATTY

oo pait)

wp pos)

Returning JSON

——
O Most of our queries will return JSON.

o The response object has a method that takes an
objed, stringifies it, puts it in the body of the HTTP
response, and then sends the response:

res.json({"beast" : qObj.animal});

o You don’tneed res.send() when you call res.json().

HTTP request from Assn 3 (CORS)

—
leturl = "hitp:/ / api.openweathermap.org/data..."

let xhr = new XMLHttpRe quest();
xhr.open(method, url, frue);
xhr.onload = fundtion(){...};
xhr.onerror = fundtion() {...};

xhr.send();

Queries

——
o The 2 in a query signals the end of the path and the
beginning of the query
o Queries are key-value pairs, separated by &
q=Davis,US &units=imperial &APPID=x xx
animal=bear
word=malapropism

O rec.query contains the query as an object.

Homework

——
o Change the query so that it takes a word as input
and returns the palindrome.
O Input: word=malapropism in query string

n,

O Output: “{ “palindrome malapropismmsiporpalam” ¥

O Then make a little app that exercises this AJAX request-
response. | gave you the html (you can make it better,
and add css, if you want). You needto add the
Javascript.

O Javascript should include an onclick function that sends
the HTTP request, and the callback function that gets
run when the response gets back.

HTTP request for Assn 4 (AJAX)

leturl = “query2animal=bat"
let xhr = new XMLHttpRe quest();
xhr.open(method, url, frue);
xhr.onload = fundtion(){...};
xhr.onerror = fundtion() {...};

xhr.send();

o URL does not contain name of server (domain name
and port). By default, it goes back to the server
the Web page came from.

