
1

ECS 162
WEB PROGRAMMING

4/5

Due Thurs 4/11
Home | About | Contact

Coinciding with the opening of Bruce
Nauman’s (MFA ’66, UC Davis) retro-
spective at The Museum of Modern Art,
New York, this exhibition features the first
realization of a participatory environment
Nauman conceived in 1970. The work is
a narrow passageway that wraps around

Read more J

Exhibit assignment

¨ Flexbox and media queries (covered today).
¨ Responsive design which matches the mock-ups

(Jamie’s pdfs) as well as possible.

¨ Harder than it looks; make some progress this
weekend.

¨ We’ll talk about the button on Monday.

Responsive design

¨ Whatever width the window is,
¤ the whole top of the page appears,

¤ and it neatly fills the width of the window.

¨ Nothing ever gets cut off and no extra fill appears
on the sides.

¨ Layout changes smoothly as window is resized, with
maybe a jump as we switch from wide to narrower
window.

We’re not just showing Dana’s pix

¨ Your program should never produce views like this

¨ These are not responsive. Why?

Google fonts

¨ Google has a collection of fonts that a Web page
can download and use. The HTML has to do the
download:

<link
href="https://fonts.googleapis.com/css?family=Monts
errat:200,500" rel="stylesheet">

font-family: montserrat, sans-serif; font-weight: 200;
font-style: normal;

2

Layout and Flexbox

¨ Traditional approaches used css display modes such
as inline-block and float to “trick” the default layout
into doing interesting things.

¨ Tables and later frames were used to arrange
chunks of content.

¨ CSS/Javascript libraries for layout (eg. Bootstrap)
got popular.

¨ Now (eg. since 2016) CSS has two built-in layout
systems, grid and flex. We’ll work with flex.

Flexbox idea:

Web page is hierarchy of flexbox containers. Within a
container, we lay out items (which might be other flex
boxes) either vertically or horizontally.

3

Flexbox containers

¨ The css display property controls layout.
¨ By default display is inline or block.
¨ Another alternative (one of many!):

display: flex;
¨ Makes the element a flexbox container. Layout of

direct children of the container is handled by
flexbox.

Layout of items

¨ Direct children of a flexbox container are flexbox
items. Specify in container how items will be laid
out:

flex-direction: row; /* default! */

or
flex-direction: column;

¨ Direction in which items are laid out in the container
is the main axis; the perpendicular direction is the
cross axis.

Getting text beside pictures

Container vs item commands

¨ Some flexbox properties are about the html
element as a flexbox container:

flex-direction, justify-content, align-items

¨ Others are about the html element as a flexbox
item:

flex-basis, flex-grow, flex-shrink
¨ Since an html element can be both a flexbox

container, and an item, keep the groups of
properties separated by a space or comment in
your css.

Basis, grow, shrink

¨ Grow is share of excess space item will take up.
¨ Shrink share of needed space item will contribute if

it has to shrink.

¨ Basis is item’s standard size in the main axis
direction; “auto” means however big it has to be to
contain it’s content.

¨ Default:
grow=0, shrink=1, basis=auto

4

Shares

¨ Grow and shrink are given
as shares of excess or
needed space, respectively.

¨ If I get two shares and you
get one share, then I get
2/3 and you get 1/3.

¨ If I get one share and you
get zero shares, I get it all
and you get nothing.

Example: Sticky footer

¨ We want the footer to
sit at the bottom of the
page, even if the
contents don’t fill up
the page.

Sticky footer

body
container

flex-direction: column

header
item

grow = 0

main
item

grow = 1
container

flex-direction: column

footer
item

grow = 0

div
item

grow = 0
container

flex-direction: row

div
item

grow = 0
container

flex-direction: row

