
ECS 162
WEB PROGRAMMING

5/13

Directory structure for project

/server --- contains miniServer3.js, or
whatever you want to call it

/server/public --- contains all static files
including html, css, and js files that will be
run on the browser. Your server should
automatically serve any file in /public.

public

server

your home dir

¨ Why is it a bad idea to have to change the server
code every time you put a new file in /public?

¨ Why is it a bad idea to server files out of "." (the
directory containing the server code)?

¨ Why is it a bad idea to have to change the server
code every time you put a new file in /public?
For a large Web site, you'd have to do this every
day. It is better to have the server serve any file that
gets put into /public automatically.

¨ Why is it a bad idea to server files out of "." (the
directory containing the server code)?
A malicious user could get the server code and any
other code it uses, and look for security holes.

Last time: Initialize database

To make a new table: CREATE TABLE flashcards (

user INT, english TEXT, korean TEXT, seen INT, correct INT)

To delete a table: DROP TABLE flashcards

Rowid User English Korean times seen times
correct

1 1 Excuse me… 실례합니다... 0 0

2 1 Where is the train
station?

기차역은
어디
있습니까?

0 0

Putting stuff into the database

¨ Text ultimately comes from the user, who could be
malicious; on the Web anybody can go to our Web
site and try to break it.

¨ Never paste user input (or any untrusted input) into
an SQL command, or any command that is going to
be executed; it basically lets someone run any code
that they want to on your server.

¨ We had the same issue with using “innerHTML”; html
is a language that gets executed by the browser.

Protecting the database

¨ To get this XKDC comic, we need to know that
"DROP TABLE" is the SQL opposite of "CREATE
TABLE"; it is how we delete a table.

Sanitizing inputs

INSERT into Flashcards (user, english, korean, seen,
correct) VALUES (1, @0, @1, 0, 0)
¨ This is a template for an insertion command.
¨ The list of values goes into the corresponding list of

columns
¨ The parameters @0 and @1 will contain the English

and Korean text
¨ Sqlite3 automatically checks that values supplied for

the parameters have the correct type, no forbidden
characters

¨ This is called sanitization

Running the SQL from Javascript

const cmdStr = 'INSERT into Flashcards (user, english,
korean, seen, correct) VALUES (1, @0, @1, 0, 0)'
db.run(cmdStr, eng, kor, insertCallback);

¨ Just like before, put the SQL command in a
string, and call db.run on the string.

¨ You can specify parameters @0, @1 in the
db.run command, eg. from the data returned
by Google Translate

Better version…

db.run(cmdStr, eng, kor, insertCallback);

function insertCallback(err) {
if (err) { console.log(err); }

}
¨ Database code is hard to debug, always try to catch

error messages in callback
¨ In this case, callback should also return response to

browser to indicate flashcard has been stored.

Comic

¨ Where is the insert command in the comic?
¨ And where is the callback function?

Getting output

SELECT *
FROM Flashcards
WHERE user = 1

¨ Returns all rows in data base with user 1

Select statement

SELECT columns FROM table WHERE Boolean

¨ Handy example:

SELECT * FROM Flashcards

¨ Dumps the whole table. The * means all columns,
and omitting the WHERE gets all rows.

More WHERE expressions

WHERE seen < 3
WHERE seen < 3 and correct < 1
¨ Handy when we are looking for cards the user has

not seen much yet

WHERE googleid = 587302830
¨ We’ll need this one when we add a table of users

to connect a user to her data when she logs in

Callbacks for data

db.get(‘SELECT * FROM Flashcards WHERE user = 1',
dataCallback);

function dataCallback(err, rowData) {
if (err) { console.log("error: ",err); }
else { console.log("got: ",rowData,"\n"); }

}
¨ rowData is an object containing data from one row.
¨ If more than one row matches, we get only the first.

Gets an array of rows

db.all(‘SELECT * FROM Flashcards WHERE user =
1', arrayCallback);

function arrayCallback(err, arrayData) {

if (err) { console.log("error: ",err,"\n");
} else { console.log("array: ",arrayData,"\n"); }}

¨ arrayData contains an array of objects, each object
contains one row.

Limiting number of rows

db.all(‘SELECT * FROM Flashcards WHERE user = 1
LIMIT 12', arrayCallback);

¨ Could be many rows that have a particular tag.
¨ We won't want to send hundreds down to the

browser; limit number chosen.

Changing a row

¨ We could always re-write an entire row to change
it. But better to just do specific cells:

UPDATE Flashcards SET seen = 1 WHERE rowid = 73

¨ The WHERE clause selects the row…or rows! Always
safe to choose by rowid since that is the unique
primary key.

Changing a row

UPDATE Flashcards SET seen = 1 WHERE rowid = 1

¨ Warning! Omitting WHERE changes all the selected
column in all the rows!

Use = not == in both SET and WHERE.

Database is asynchronous

¨ Commands are not necessarily done in the order we
issue them.
db.run(‘UPDATE Flashcards SET seen = 1 WHERE
rowid = 1’), errorCallback);

db.get('SELECT seen from Flashcards WHERE rowid
=1', dataCallback);

¨ Sometimes the SELECT commands sees seen = 1,
sometimes seen = 0 – it depends on whether the
UPDATE finished before the SELECT occurred.

Enforcing ordering

¨ Sometimes we don't care if commands are executed
in order, eg. insertion of three rows.

¨ Sometimes we do care, eg. INSERT before UPDATE,
UPDATE before SELECT.

¨ To enforce ordering, use the callbacks.
¨ Example: Issue the SELECT command in the callback

function for the INSERT.

Order commands with callbacks

cmdStr = 'INSERT into Flashcards (user, english,
korean, seen, correct) VALUES (1, @0, @1, 0, 0) ’;
db.run(cmdStr,eng, kor, insertCallback);

function insertCallback(err) {
if (err) { console.log(”insert error!", err); }
else {

lookAtRowid(); // function that issues SELECT
}

Other ways people build DBs

¨ We could construct the database using sqlite3
directly (note! NOT THE SAME as sqlite!)

¨ We can access it from the sqlite3 command line:
amenta@cs162:~/server$ sqlite3
sqlite> attach database ”Flashcard.db" as db;
sqlite> select user from Flashcards where

rowid = 1;
sqlite> detach database db;

Next topic: React

¨ Moving from Server to Browser

¨ React is a front-end user interface library
¨ Developed by Facebook. Very popular.
¨ Helps in several ways
¨ First, enforces modular design of UI code by

organizing UI into components.

React photo gallery component

¨ Gallery component contains image tiles

¨ Image tile component contains picture and controls
¨ Controls contains tags, add-tag box, close button

¨ Tag contains text, delete button

¨ Lowest level components contain HTML elements

Components as "virtual elements"

¨ Components and real HTML elements can be
combined in a hierarchy to build up Web pages

¨ Components have properties like elements
eg. a Tag has a "text" property, just like an img has
a src property.

¨ Putting pieces of UIs into these "virtual elements"
lets us write modular software

Modularity allows code reuse

¨ We re-used this photo gallery!
¨ I found it in an article called "15 Awesome React

Components", also mentioned elsewhere…
¨ It was written by a developer called Sandra

Gonzalez; I got it off her github.
¨ This year I think we’ll re-use someone’s flipping card

component for the flashcard review section.

Virtual DOM

¨ Second advantage: Programmer’s illusion that the
entire DOM is re-constructed at every event (eg.
user clicks button, React re-builds entire DOM).

¨ User actions and other events change basic state
variables, and then React generates the DOM
based on new state variables.

¨ Always show same display in same state, whatever
path through the controls took you there.

